Docs Menu
Docs Home
/
MongoDB Atlas
/ /

How to Run Atlas Search Compound Queries with Weighted Fields

On this page

  • Create the Atlas Search Index With Dynamic Mapping
  • Run Compound Queries
  • Run a Compound Query to Boost Results
  • Run a Compound Query to Bury Results
  • Continue Learning

This tutorial demonstrates how to add weights to your search fields to boost or bury the documents in the results or a category of results. It demonstrates how to assign one or more values to a field to return results with a higher or lower score.

Specifically, the tutorial shows how to create an index with dynamic mapping on the sample_mflix.movies collection. It shows how to run compound queries and alter the score using constant, function, and boost. It takes you through the following steps:

  1. Set up an Atlas Search index with dynamic mapping for the sample_mflix.movies collection.

  2. Run the following Atlas Search queries:

    • Query the year field and alter the score using specific a word in the title field to boost the document in the results.

    • Query the title and plot fields and alter the score based on a specific genre in the genres field to bury results in that genre.

Before you begin, ensure that your Atlas cluster meets the requirements described in the Prerequisites.

To create an Atlas Search index, you must have Project Data Access Admin or higher access to the project.

In this section, you will create an Atlas Search index that uses dynamic mapping to index the fields in the sample_mflix.movies collection.

1
  1. If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.

  2. If it's not already displayed, select your desired project from the Projects menu in the navigation bar.

  3. If the Clusters page is not already displayed, click Database in the sidebar.

    The Clusters page displays.

2

You can go the Atlas Search page from the sidebar, the Data Explorer, or your cluster details page.

  1. In the sidebar, click Atlas Search under the Services heading.

  2. From the Select data source dropdown, select your cluster and click Go to Atlas Search.

    The Atlas Search page displays.

  1. Click the Browse Collections button for your cluster.

  2. Expand the database and select the collection.

  3. Click the Search Indexes tab for the collection.

    The Atlas Search page displays.

  1. Click the cluster's name.

  2. Click the Atlas Search tab.

    The Atlas Search page displays.

3
4
  • For a guided experience, select the Atlas Search Visual Editor.

  • To edit the raw index definition, select the Atlas Search JSON Editor.

5
  1. In the Index Name field, enter compound-query-custom-score-tutorial.

    Note

    If you name your index default, you don't need to specify an index parameter when using the $search pipeline stage. Otherwise, you must specify the index name using the index parameter.

  2. In the Database and Collection section, find the sample_mflix database, and select the movies collection.

6

You can create an Atlas Search index that uses dynamic mappings or static mappings. To learn more about dynamic and static mappings, see Static and Dynamic Mappings.

The following index definition dynamically indexes the fields of supported types in the movies collection. You can use the Atlas Search Visual Editor or the Atlas Search JSON Editor in the Atlas user interface to create the index.

  1. Click Next.

  2. Review the "default" index definition for the movies collection.

  1. Click Next.

  2. Review the index definition.

    Your index definition should look similar to the following:

    {
    "mappings": {
    "dynamic": true
    }
    }

    The above index definition dynamically indexes the fields of supported types in each document in the movies collection.

  3. Click Next.

7
8

A modal window appears to let you know your index is building. Click the Close button.

9

The index should take about one minute to build. While it is building, the Status column reads Build in Progress. When it is finished building, the Status column reads Active.

You use the compound operator to combine two or more operators into a single query. Atlas Search assigns a score based on relevance, in order from highest score to lowest, to every document that it returns for your query. The queries demonstrate how to boost or bury the documents in the results.


➤ Use the Select your language drop-down menu to set the language of the examples in this section.


Tip

Atlas Search provides a sample compound query template with guidance. To learn more, see View Query Guidance Template.

In this section, you connect to your Atlas cluster and run the sample queries using the compound operator against the title and year fields in the sample_mflix.movies collection. The sample queries use custom scoring to alter the relevance score returned by Atlas Search for movie titles that contain the term snow.

1
  1. If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.

  2. If it's not already displayed, select your desired project from the Projects menu in the navigation bar.

  3. If the Clusters page is not already displayed, click Database in the sidebar.

    The Clusters page displays.

2

You can go the Atlas Search page from the sidebar, the Data Explorer, or your cluster details page.

  1. In the sidebar, click Atlas Search under the Services heading.

  2. From the Select data source dropdown, select your cluster and click Go to Atlas Search.

    The Atlas Search page displays.

  1. Click the Browse Collections button for your cluster.

  2. Expand the database and select the collection.

  3. Click the Search Indexes tab for the collection.

    The Atlas Search page displays.

  1. Click the cluster's name.

  2. Click the Atlas Search tab.

    The Atlas Search page displays.

3

Click the Query button to the right of the index to query.

4

Click Edit Query to view a default query syntax sample in JSON format.

5

Copy and paste the following query into the Query Editor, and then click the Search button in the Query Editor.

The following examples use the compound operator with subqueries to search for movies between the years 2013 to 2015 with the term snow in the title field.

The following query:

  • Uses the following compound operator clauses:

    • filter clause with the range operator to search for movies between the years 2013 to 2015.

    • should clause with the text operator to query for the term snow in the title field and alter the score with the constant option. The constant option replaces all score results for the search term with 5.

  • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
filter: [{
range: {
path: "year",
gte: 2013,
lte: 2015
}
}],
should: [{
text: {
query: "snow",
path: "title",
score: {constant: {value: 5}}
}
}]
},
highlight:{
path: "title"
}
}
}
]
SCORE: 5 _id: "573a13d7f29313caabda38ad"
Snow in Paradise
Matching fields: title
SCORE: 5 _id: "573a13e2f29313caabdbeded"
Dead Snow 2: red vs.
Matching fields: title
SCORE: 5 _id: "573a13e6f29313caabdc66c4"
The Snow White Murder Case
Matching fields: title
SCORE: 5 _id: "573a13edf29313caabdd37bd"
Snow on the Blades
Matching fields: title
SCORE: 0 _id: "573a13acf29313caabd29366"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13adf29313caabd2b765"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b0f29313caabd333e7"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b0f29313caabd3486a"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b1f29313caabd3719d"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b2f29313caabd3abb9"
No highlights found.
Matching fields: unknown

The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the constant option.

The following query:

  • Uses the following compound operator clauses:

    • must clause with the range operator to search for movies between the years 2013 to 2015.

    • should clause with the text operator to query for the term snow in the title field and alter the score with the boost option. The boost option multiplies the base score in the results for the search term by 2.

  • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
must: [{
range: {
path: "year",
gte: 2013,
lte: 2015
}
}],
should: [{
text: {
query: "snow",
path: "title",
score: {boost: {value: 2}}
}
}]
},
highlight:{
path: "title"
}
}
}
]
SCORE: 6.7722930908203125 _id: "573a13d7f29313caabda38ad"
Snow in Paradise
Matching fields: title
SCORE: 6.063445568084717 _id: "573a13edf29313caabdd37bd"
Snow on the Blades
Matching fields: title
SCORE: 5.509652137756348 _id: "573a13e6f29313caabdc66c4"
The Snow White Murder Case
Matching fields: title
SCORE: 5.065053939819336 _id: "573a13e2f29313caabdbeded"
Dead Snow 2: Red vs.
Matching fields: title
SCORE: 1 _id: "573a13acf29313caabd29366"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13adf29313caabd2b765"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd333e7"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd3486a"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b1f29313caabd3719d"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b2f29313caabd3abb9"
No highlights found.
Matching fields: unknown

The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the boost option.

The following query:

  • Uses the following compound operator clauses with the boost option to prioritize some fields more than other fields:

    • must clause with the text operator to prioritize the genre comedy the most, followed by the term snow in the title field. The boost option applies weights to the fields.

    • should clause with the range operator to search for movies between the years 2013 to 2015.

    Note

    The boost option applies different weights to the fields to prioritize the fields.

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
must: [{
text: {
query: "comedy",
path: "genres",
score: {boost: {value: 9}}
}
},
{
text: {
query: "snow",
path: "title",
score: {boost: {value: 5}}
}
}],
should: [{
range: {
path: "year",
gte: 2013,
lte: 2015,
score: {boost: {value: 3}}
}
}]
}
}
}
]
SCORE: 21.872983932495117 _id: "573a13c2f29313caabd6874c"
plot: "A ski vacation turns horrific for a group of medical students, as they…"
genres: Array
runtime: 91
SCORE: 21.043487548828125 _id: "573a139ff29313caabcffff8"
fullplot: "When an entire town in upstate New York is closed down by an unexpecte…"
imdb: Object
year: 2000
SCORE: 21.043487548828125 _id: "573a13a6f29313caabd16b02"
plot: "When a Miami dentist inherits a team of sled dogs, he's got to learn t…"
genres: Array
runtime: 99
SCORE: 19.523927688598633 _id: "573a13a1f29313caabd06765"
fullplot: "Our two young lovers meet on a series of snowy days in high school. Ye…"
imdb: Object
runtime: 1999
SCORE: 17.426334381103516 _id: "573a13e2f29313caabdbeded"
plot: "Still on the run from a group of Nazi zombies, a man seeks the aid of …"
genres: Array
runtime: 100
SCORE: 16.367326736450195 _id: "573a13c2f29313caabd6688e"
countries: Array
genres: Array
runtime: 108
SCORE: 15.537829399108887 _id: "573a13b1f29313caabd36d7d"
plot: "A love-struck Italian poet is stuck in Iraq at the onset of an America…"
genres: Array
runtime: 110
SCORE: 14.4263334274292 _id: "573a1395f29313caabce1925"
plot: "An ice-skating Snow White finds refuge from the Wicked Queen with the …"
genres: Array
runtime: 107

The following query:

  • Uses the following compound operator clauses:

    • must clause with the range operator to search for movies between the years 2013 to 2015.

    • should clause with the text operator to query for the term snow in the title field and alter the score with the function option. The function option adds the following using an arithmetic expression:

      • The relevance score of the query for the search term

      • The value of the numeric field named imdb.rating or the number 2 for those documents that do not have the imdb.rating field.

  • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
must: [{
range: {
path: "year",
gte: 2013,
lte: 2015,
}
}],
should: [{
text: {
query: "snow",
path: "title",
score: {
function: {
add: [{
path: {
value: "imdb.rating",
undefined: 2
}
},
{
score: "relevance"
}]
}
}
}
}]
},
highlight: {
path: "title"
}
}
}
]
SCORE: 10.454826354980469 _id: "573a13e6f29313caabdc66c4"
The Snow White Murder Case
Matching fields: title
SCORE: 10.3317232131958 _id: "573a13edf29313caabdd37bd"
Snow on the Blades
Matching fields: title
SCORE: 10.032526969909668 _id: "573a13e2f29313caabdbeded"
Dead Snow 2: Red vs.
Matching fields: title
SCORE: 8.386146545410156 _id: "573a13d7f29313caabda38ad"
Snow in Paradise
Matching fields: title
SCORE: 1 _id: "573a13acf29313caabd29366"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13adf29313caabd2b765"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd333e7"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd3486a"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b1f29313caabd3719d"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b2f29313caabd3abb9"
No highlights found.
Matching fields: unknown

The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the function option.

6

The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.

1

Open mongosh in a terminal window and connect to your cluster. For detailed instructions on connecting, see Connect via mongosh.

2

Run the following command at mongosh prompt:

use sample_mflix
3

The following examples use the compound operator with subqueries to search for movies between the years 2013 to 2015 with the term snow in the title field.

This query uses the following pipeline stages:

  • $search to query the collection. The query:

    • Uses the following compound operator clauses:

      • filter clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the constant option. The constant option replaces all score results for the search term with 5.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

  • $limit stage to limit the output to 10 results.

  • $project stage to:

    • Exclude all fields except title and year

    • Add a score field

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"filter": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015
}
}],
"should": [{
"text": {
"query": "snow",
"path": "title",
"score": {"constant": {"value": 5}}
}
}]
},
"highlight": {
"path": "title"
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"score": { "$meta": "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}
}
])

Atlas Search returns the following results for constant:

[
{
title: 'Snow in Paradise',
year: 2014,
score: 5,
highlights: [
{
score: 1.382846713066101,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' in Paradise', type: 'text' }
]
}
]
},
{
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 5,
highlights: [
{
score: 1.3924485445022583,
path: 'title',
texts: [
{ value: 'Dead ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' 2: Red vs. ', type: 'text' }
]
}
]
},
{
title: 'The Snow White Murder Case',
year: 2014,
score: 5,
highlights: [
{
score: 1.3525336980819702,
path: 'title',
texts: [
{ value: 'The ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' White Murder Case', type: 'text' }
]
}
]
},
{
title: 'Snow on the Blades',
year: 2014,
score: 5,
highlights: [
{
score: 1.3766303062438965,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' on the Blades', type: 'text' }
]
}
]
},
{ year: 2013, title: 'The Secret Life of Walter Mitty', score: 0, highlights: [] },
{ title: 'Jurassic World', year: 2015, score: 0, highlights: [] },
{ title: 'Action Jackson', year: 2014, score: 0, highlights: [] },
{ year: 2013, title: 'In Secret', score: 0, highlights: [] },
{ title: 'The Stanford Prison Experiment', year: 2015, score: 0, highlights: [] },
{ year: 2014, title: 'The Giver', score: 0, highlights: [] }
]

The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the constant option.

This query uses the following pipeline stages:

  • $search to query the collection. The query:

    • Uses the following compound operator clauses:

      • must clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the boost option. The boost option multiplies the base score in the results for the search term by 2.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

  • $limit stage to limit the output to 10 results.

  • $project stage to:

    • Exclude all fields except title and year

    • Add a score field

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"must": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015
}
}],
"should": [{
"text": {
"query": "snow",
"path": "title",
"score": {"boost": {"value": 2}}
}
}]
},
"highlight": {
"path": "title"
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"score": { "$meta": "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}
}
])

Atlas Search returns the following results for boost:

[
{
title: 'Snow in Paradise',
year: 2014,
score: 6.7722930908203125,
highlights: [
{
score: 1.382846713066101,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' in Paradise', type: 'text' }
]
}
]
},
{
title: 'Snow on the Blades',
year: 2014,
score: 6.063445568084717,
highlights: [
{
score: 1.3766303062438965,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' on the Blades', type: 'text' }
]
}
]
},
{
title: 'The Snow White Murder Case',
year: 2014,
score: 5.509652137756348,
highlights: [
{
score: 1.3525336980819702,
path: 'title',
texts: [
{ value: 'The ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' White Murder Case', type: 'text' }
]
}
]
},
{
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 5.065053939819336,
highlights: [
{
score: 1.3924485445022583,
path: 'title',
texts: [
{ value: 'Dead ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' 2: Red vs. ', type: 'text' }
]
}
]
},
{ year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] },
{ title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
{ title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
{ year: 2013, title: 'In Secret', score: 1, highlights: [] },
{ title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
{ year: 2014, title: 'The Giver', score: 1, highlights: [] }
]

The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the boost option.

This query uses the following pipeline stages:

  • $search to query the collection. The query uses the following compound operator clauses with the boost option to prioritize some fields more than other fields:

    • must clause with the text operator to prioritize the genre comedy the most, followed by the term snow in the title field. The boost option applies weights to the fields.

    • should clause with the range operator to search for movies between the years 2013 to 2015.

    Note

    The boost option applies different weights to the fields to prioritize the fields.

  • $limit stage to limit the output to 10 results.

  • $project stage to:

    • Exclude all fields except title, year, and genres

    • Add a score field

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"must": [{
"text": {
"path": "genres",
"query": "comedy",
"score": {"boost": {"value": 9}}
}
},
{
"text": {
"path": "title",
"query": "snow",
"score": {"boost": {"value": 5}}
}
}],
"should": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015,
"score": {"boost": {"value": 3}}
}
}]
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"genres": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{
genres: [ 'Comedy', 'Horror' ],
title: 'Dead Snow',
year: 2009,
score: 21.872983932495117
},
{
year: 2000,
genres: [ 'Adventure', 'Comedy', 'Family' ],
title: 'Snow Day',
score: 21.043487548828125
},
{
genres: [ 'Adventure', 'Comedy', 'Family' ],
title: 'Snow Dogs',
year: 2002,
score: 21.043487548828125
},
{
year: 1999,
genres: [ 'Comedy', 'Romance' ],
title: 'Let It Snow',
score: 19.523927688598633
},
{
genres: [ 'Action', 'Comedy', 'Horror' ],
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 17.426334381103516
},
{
genres: [ 'Comedy', 'Drama' ],
title: 'Snow White and Russian Red',
year: 2009,
score: 16.367326736450195
},
{
genres: [ 'Comedy', 'Drama', 'Romance' ],
title: 'The Tiger and the Snow',
year: 2005,
score: 15.537829399108887
},
{
genres: [ 'Adventure', 'Comedy', 'Family' ],
title: 'Snow White and the Three Stooges',
year: 1961,
score: 14.4263334274292
}
]

This query uses the following pipeline stages:

  • $search to query the collection. The query:

    • Uses the following compound operator clauses:

      • must clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the function option. The function option adds the following using an arithmetic expression:

        • The relevance score of the query for the search term

        • The value of the numeric field named imdb.rating or the number 2 for those documents that do not have the imdb.rating field.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

  • $limit stage to limit the output to 10 results.

  • $project stage to:

    • Exclude all fields except title and year

    • Add a score field

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"must": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015
}
}],
"should": [{
"text": {
"query": "snow",
"path": "title",
"score": {
"function": {
"add": [{
"path": {
"value": "imdb.rating",
"undefined": 2
}
},
{
"score": "relevance"
}]
}
}
}
}]
},
"highlight": {
"path": "title"
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"score": { "$meta": "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}
}
])

Atlas Search returns the following results for function:

[
{
title: 'The Snow White Murder Case',
year: 2014,
score: 10.454826354980469,
highlights: [
{
score: 1.3525336980819702,
path: 'title',
texts: [
{ value: 'The ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' White Murder Case', type: 'text' }
]
}
]
},
{
title: 'Snow on the Blades',
year: 2014,
score: 10.3317232131958,
highlights: [
{
score: 1.3766303062438965,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' on the Blades', type: 'text' }
]
}
]
},
{
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 10.032526969909668,
highlights: [
{
score: 1.3924485445022583,
path: 'title',
texts: [
{ value: 'Dead ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' 2: Red vs. ', type: 'text' }
]
}
]
},
{
title: 'Snow in Paradise',
year: 2014,
score: 8.386146545410156,
highlights: [
{
score: 1.382846713066101,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' in Paradise', type: 'text' }
]
}
]
},
{ year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] },
{ title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
{ title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
{ year: 2013, title: 'In Secret', score: 1, highlights: [] },
{ title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
{ year: 2014, title: 'The Giver', score: 1, highlights: [] }
]

The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the function option.

1

Open MongoDB Compass and connect to your cluster. For detailed instructions on connecting, see Connect via Compass.

2

On the Database screen, click the sample_mflix database, then click the movies collection.

3

The query performs the following tasks:

  • Uses the following compound operator clauses:

    • filter clause with the range operator to search for movies between the years 2013 to 2015.

    • should clause with the text operator to query for the term snow in the title field and alter the score with the constant option. The constant option replaces all score results for the search term with 5.

  • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

  • Uses the following pipeline stages:

    • $limit stage to limit the output to 10 results

    • $project stage to:

      • Exclude all fields except title and year

      • Add two fields named score and highlights

To run this query in MongoDB Compass:

  1. Click the Aggregations tab.

  2. Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.

    Pipeline Stage
    Query
    $search
    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "filter": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015
    }
    }],
    "should": [{
    "text": {
    "query": "snow",
    "path": "title",
    "score": {"constant": {"value": 5}}
    }
    }]
    },
    "highlight": { "path": "title" }
    }
    $limit
    10
    $project
    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "score": { "$meta": "searchScore" },
    "highlights": { "$meta": "searchHighlights" }
    }

    If you enabled Auto Preview, MongoDB Compass displays the following documents next to the $project pipeline stage:

    {
    title: 'Snow in Paradise',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.382846713066101,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' in Paradise', type: 'text' }
    ]
    }]
    },
    {
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.3924485445022583,
    path: 'title',
    texts: [
    { value: 'Dead ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' 2: Red vs. ', type: 'text' }
    ]
    }]
    },
    {
    title: 'The Snow White Murder Case',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.3525336980819702,
    path: 'title',
    texts: [
    { value: 'The ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' White Murder Case', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow on the Blades',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.3766303062438965,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' on the Blades', type: 'text' }
    ]
    }]
    },
    { year: 2013, title: 'The Secret Life of Walter Mitty', score: 0, highlights: [] },
    { title: 'Jurassic World', year: 2015, score: 0, highlights: [] },
    { title: 'Action Jackson', year: 2014, score: 0, highlights: [] },
    { year: 2013, title: 'In Secret', score: 0, highlights: [] },
    { title: 'The Stanford Prison Experiment', year: 2015, score: 0, highlights: [] },
    { year: 2014, title: 'The Giver', score: 0, highlights: [] }

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the constant option.

4
  1. Click the Aggregations tab.

  2. Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.

    The query uses the following pipeline stages:

    • $search to perform the following tasks:

      • Queries using the following compound operator clauses:

        • must clause with the range operator to search for movies between the years 2013 to 2015.

        • should clause with the text operator to query for the term snow in the title field and alter the score with the boost option. The boost option multiplies the base score in the results for the search term by 2.

      • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • $limit stage to limit the output to 10 results

    • $project stage to:

      • Exclude all fields except title and year

      • Add two fields named score and highlights

    Pipeline Stage
    Query
    $search
    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "must": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015
    }
    }],
    "should": [{
    "text": {
    "query": "snow",
    "path": "title",
    "score": {"boost": {"value": 2}}
    }
    }]
    },
    "highlight": { "path": "title" }
    }
    $limit
    10
    $project
    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "score": { "$meta": "searchScore" },
    "highlights": { "$meta": "searchHighlights" }
    }

    This query uses the following pipeline stages:

    • $search to perform the following tasks:

      • Queries using the compound operator clauses with the boost option to prioritize some fields more than other fields:

        • must clause with the text operator to prioritize the genre comedy the most, followed by the term snow in the title field. The boost option applies weights to the fields.

        • should clause with the range operator to search for movies between the years 2013 to 2015.

        Note

        The boost option applies different weights to the fields to prioritize the fields.

    • $limit stage to limit the output to 10 results

    • $project stage to:

      • Exclude all fields except title and year

      • Add two fields named score and highlights

    • must clause with the text operator to prioritize the genre comedy the most, followed by the term snow in the title field. The boost option applies weights to the fields.

    • should clause with the range operator to search for movies between the years 2013 to 2015.

    Note

    The boost option applies different weights to the fields to prioritize the fields.

    Pipeline Stage
    Query
    $search
    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "must": [{
    "text": {
    "path": "genres",
    "query": "comedy",
    "score": {"boost": {"value": 9}}
    }
    },
    {
    "text": {
    "path": "title",
    "query": "snow",
    "score": {"boost": {"value": 5}}
    }
    }],
    "should": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015,
    "score": {"boost": {"value": 3}}
    }
    }]
    }
    }
    $limit
    10
    $project
    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "genres": 1,
    "score": { "$meta": "searchScore" }
    }

    If you enabled Auto Preview, MongoDB Compass displays the following documents next to the $project pipeline stage:

    {
    title: 'Snow in Paradise',
    year: 2014,
    score: 6.7722930908203125,
    highlights: [{
    score: 1.382846713066101,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' in Paradise', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow on the Blades',
    year: 2014,
    score: 6.063445568084717,
    highlights: [{
    score: 1.3766303062438965,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' on the Blades', type: 'text' }
    ]
    }]
    },
    {
    title: 'The Snow White Murder Case',
    year: 2014,
    score: 5.509652137756348,
    highlights: [{
    score: 1.3525336980819702,
    path: 'title',
    texts: [
    { value: 'The ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' White Murder Case', type: 'text' }
    ]
    }]
    },
    {
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 5.065053939819336,
    highlights: [{
    score: 1.3924485445022583,
    path: 'title',
    texts: [
    { value: 'Dead ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' 2: Red vs. ', type: 'text' }
    ]
    }]
    },
    { year: 2013, title: 'The Secret Life of Walter Mitty',score: 1, highlights: [] },
    { title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
    { title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
    { year: 2013, title: 'In Secret', score: 1, highlights: [] },
    { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
    { year: 2014, title: 'The Giver', score: 1, highlights: [] }

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the boost option.

    [
    {
    genres: [ 'Comedy', 'Horror' ],
    title: 'Dead Snow',
    year: 2009,
    score: 21.872983932495117
    },
    {
    year: 2000,
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Day',
    score: 21.043487548828125
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Dogs',
    year: 2002,
    score: 21.043487548828125
    },
    {
    year: 1999,
    genres: [ 'Comedy', 'Romance' ],
    title: 'Let It Snow',
    score: 19.523927688598633
    },
    {
    genres: [ 'Action', 'Comedy', 'Horror' ],
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 17.426334381103516
    },
    {
    genres: [ 'Comedy', 'Drama' ],
    title: 'Snow White and Russian Red',
    year: 2009,
    score: 16.367326736450195
    },
    {
    genres: [ 'Comedy', 'Drama', 'Romance' ],
    title: 'The Tiger and the Snow',
    year: 2005,
    score: 15.537829399108887
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow White and the Three Stooges',
    year: 1961,
    score: 14.4263334274292
    }
    ]
5

The query uses the following pipeline stages:

  • $search stage to perform the following tasks:

    • Queries using the following compound operator clauses:

      • must clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the function option. The function option adds the following using an arithmetic expression:

        • The relevance score of the query for the search term

        • The value of the numeric field named imdb.rating or the number 2 for those documents that do not have the imdb.rating field.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

  • $limit stage to limit the output to 10 results

  • $project stage to:

    • Exclude all fields except title and year

    • Add two fields named score and highlights

To run this query in MongoDB Compass:

  1. Click the Aggregations tab.

  2. Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.

    Pipeline Stage
    Query
    $search
    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "must": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015
    }
    }],
    "should": [{
    "text": {
    "query": "snow",
    "path": "title",
    "score": {
    "function": {
    "add": [{
    "path": {
    "value": "imdb.rating",
    "undefined": 2
    }
    },
    {
    "score": "relevance"
    }]
    }
    }
    }
    }]},
    "highlight":{ "path": "title" }
    }
    $limit
    10
    $project
    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "score": { "$meta": "searchScore" },
    "highlights": { "$meta": "searchHighlights" }
    }

    If you enabled Auto Preview, MongoDB Compass displays the following documents next to the $project pipeline stage:

    {
    title: 'The Snow White Murder Case',
    year: 2014,
    score: 10.454826354980469,
    highlights: [{
    score: 1.3525336980819702,
    path: 'title',
    texts: [
    { value: 'The ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' White Murder Case', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow on the Blades',
    year: 2014,
    score: 10.3317232131958,
    highlights: [{
    score: 1.3766303062438965,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' on the Blades', type: 'text' }
    ]
    }]
    },
    {
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 10.032526969909668,
    highlights: [{
    score: 1.3924485445022583,
    path: 'title',
    texts: [
    { value: 'Dead ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' 2: Red vs. ', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow in Paradise',
    year: 2014,
    score: 8.386146545410156,
    highlights: [{
    score: 1.382846713066101,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' in Paradise', type: 'text' }
    ]
    }]
    },
    { year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] },
    { title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
    { title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
    { year: 2013, title: 'In Secret', score: 1, highlights: [] },
    { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
    { year: 2014, title: 'The Giver', score: 1, highlights: [] }

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the function option.

1
  1. Create a new directory called compound-constant-example and initialize your project with the dotnet new command.

    mkdir compound-constant-example
    cd compound-constant-example
    dotnet new console
  2. Add the .NET/C# Driver to your project as a dependency.

    dotnet add package MongoDB.Driver
  3. Replace the contents of the Program.cs file with the following code.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Uses the following compound clauses to query the collection:

      • filter clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the constant option. The constant option replaces all score results for the search term with 5.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • Uses the following pipeline stages:

      • $limit stage to limit the output to 10 results

      • $project stage to:

        • Exclude all fields except title and year

        • Add two fields named score and highlights

    • Iterates over the cursor to print the documents that match the query.

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundConstantExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 // define and run pipeline
    23 var results = moviesCollection.Aggregate()
    24 .Search(Builders<MovieDocument>.Search.Compound()
    25 .Filter(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015)))
    26 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Constant(5))),
    27 new SearchHighlightOptions<MovieDocument>(movie => movie.Title),
    28 indexName: "compound-query-custom-score-tutorial")
    29 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    30 .Include(movie => movie.Title)
    31 .Include(movie => movie.Year)
    32 .Exclude(movie => movie.Id)
    33 .MetaSearchScore(movie => movie.Score)
    34 .MetaSearchHighlights("highlights"))
    35 .Limit(10)
    36 .ToList();
    37
    38 // print results
    39 foreach (var movie in results)
    40 {
    41 Console.WriteLine(movie.ToJson());
    42 }
    43 }
    44}
    45
    46[BsonIgnoreExtraElements]
    47public class MovieDocument
    48{
    49 [BsonIgnoreIfDefault]
    50 public ObjectId Id { get; set; }
    51 public string Title { get; set; }
    52 public int Year { get; set; }
    53 [BsonElement("highlights")]
    54 public List<SearchHighlight> Highlights { get; set; }
    55 public double Score { get; set; }
    56}
  4. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  5. Compile and run the Program.cs file.

    dotnet run compound-constant-example.csproj
    {
    "title" : "Snow in Paradise",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3828467130661011,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }]
    }],
    "score" : 5.0
    }
    {
    "title" : "Dead Snow 2: Red vs. Dead",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3924485445022583,
    "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }]
    }],
    "score" : 5.0
    }
    {
    "title" : "The Snow White Murder Case",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3525336980819702,
    "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }]
    }],
    "score" : 5.0
    }
    {
    "title" : "Snow on the Blades",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3766303062438965,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }]
    }],
    "score" : 5.0
    }
    { "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 0.0 }
    { "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 0.0 }
    { "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 0.0 }
    { "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 0.0 }
    { "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 0.0 }
    { "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 0.0 }

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the constant option.

2
  1. Create a new directory called compound-boost-example and initialize your project with the dotnet new command.

    mkdir compound-boost-example
    cd compound-boost-example
    dotnet new console
  2. Add the .NET/C# Driver to your project as a dependency.

    dotnet add package MongoDB.Driver
  3. Replace the contents of the Program.cs file with the following code.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Iterates over the cursor to print the documents that match the query.

    The query uses the following pipeline stages:

    • $search stage to query the collection. The query:

      • Uses the following compound operator clauses:

        • must clause with the range operator to search for movies between the years 2013 to 2015.

        • should clause with the text operator to query for the term snow in the title field and alter the score with the boost option. The boost option multiplies the base score in the results for the search term by 2.

      Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • $limit stage to limit the output to 10 results

    • $project stage to:

      • Exclude all fields except title and year

      • Add two fields named score and highlights

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundBoostSingleExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 // define and run pipeline
    23 var results = moviesCollection.Aggregate()
    24 .Search(Builders<MovieDocument>.Search.Compound()
    25 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015)))
    26 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(2))),
    27 new SearchHighlightOptions<MovieDocument>(movie => movie.Title),
    28 indexName: "compound-query-custom-score-tutorial")
    29 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    30 .Include(movie => movie.Title)
    31 .Include(movie => movie.Year)
    32 .Exclude(movie => movie.Id)
    33 .MetaSearchScore(movie => movie.Score)
    34 .MetaSearchHighlights("highlights"))
    35 .Limit(10)
    36 .ToList();
    37
    38 // print results
    39 foreach (var movie in results)
    40 {
    41 Console.WriteLine(movie.ToJson());
    42 }
    43 }
    44}
    45
    46[BsonIgnoreExtraElements]
    47public class MovieDocument
    48{
    49 [BsonIgnoreIfDefault]
    50 public ObjectId Id { get; set; }
    51 public string Title { get; set; }
    52 public int Year { get; set; }
    53 [BsonElement("highlights")]
    54 public List<SearchHighlight> Highlights { get; set; }
    55 public double Score { get; set; }
    56}

    This query uses the following compound operator clauses with the boost option to prioritize some fields more than other fields:

    • must clause with the text operator to prioritize the genre comedy the most, followed by the term snow in the title field. The boost option applies weights to the fields.

    • should clause with the range operator to search for movies between the years 2013 to 2015.

    Note

    The boost option applies different weights to the fields to prioritize the fields.

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundBoostMultipleExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 // define and run pipeline
    23 var results = moviesCollection.Aggregate()
    24 .Search(Builders<MovieDocument>.Search.Compound()
    25 .Must(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "comedy", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(9)))
    26 .Must(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(5)))
    27 .Should(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015), score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(3))),
    28 indexName: "compound-query-custom-score-tutorial")
    29 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    30 .Include(movie => movie.Genres)
    31 .Include(movie => movie.Title)
    32 .Include(movie => movie.Year)
    33 .Exclude(movie => movie.Id)
    34 .MetaSearchScore(movie => movie.Score))
    35 .Limit(10)
    36 .ToList();
    37
    38 // print results
    39 foreach (var movie in results)
    40 {
    41 Console.WriteLine(movie.ToJson());
    42 }
    43 }
    44}
    45
    46[BsonIgnoreExtraElements]
    47public class MovieDocument
    48{
    49 [BsonIgnoreIfDefault]
    50 public ObjectId Id { get; set; }
    51 public string [] Genres { get; set; }
    52 public string Title { get; set; }
    53 public int Year { get; set; }
    54 public double Score { get; set; }
    55}
  4. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  5. Compile and run the Program.cs file.

    dotnet run compound-boost-example.csproj
    {
    "title" : "Snow in Paradise",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3828467130661011,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }]
    }],
    "score" : 6.7722930908203125
    }
    {
    "title" : "Snow on the Blades",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3766303062438965,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }]
    }],
    "score" : 6.0634455680847168
    }
    {
    "title" : "The Snow White Murder Case",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3525336980819702,
    "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }]
    }],
    "score" : 5.5096521377563477
    }
    {
    "title" : "Dead Snow 2: Red vs. Dead",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3924485445022583,
    "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }]
    }],
    "score" : 5.0650539398193359
    }
    { "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 1.0 }
    { "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 1.0 }

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the boost option.

    dotnet run compound-boost-example.csproj
    { "genres" : ["Comedy", "Horror"], "title" : "Dead Snow", "year" : 2009, "score" : 21.872983932495117 }
    { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow Day", "year" : 2000, "score" : 21.043487548828125 }
    { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow Dogs", "year" : 2002, "score" : 21.043487548828125 }
    { "genres" : ["Comedy", "Romance"], "title" : "Let It Snow", "year" : 1999, "score" : 19.523927688598633 }
    { "genres" : ["Action", "Comedy", "Horror"], "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "score" : 17.426334381103516 }
    { "genres" : ["Comedy", "Drama"], "title" : "Snow White and Russian Red", "year" : 2009, "score" : 16.367326736450195 }
    { "genres" : ["Comedy", "Drama", "Romance"], "title" : "The Tiger and the Snow", "year" : 2005, "score" : 15.537829399108887 }
    { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow White and the Three Stooges", "year" : 1961, "score" : 14.426333427429199 }
3
  1. Create a new directory called compound-function-example and initialize your project with the dotnet new command.

    mkdir compound-function-example
    cd compound-function-example
    dotnet new console
  2. Add the .NET/C# Driver to your project as a dependency.

    dotnet add package MongoDB.Driver
  3. Replace the contents of the Program.cs file with the following code.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Uses the following pipeline stages to query the collection:

      • must clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the function option. The function option adds the following using an arithmetic expression:

        • The relevance score of the query for the search term

        • The value of the numeric field named imdb.rating or the number 2 for those documents that do not have the imdb.rating field.

    • Uses the following pipeline stages:

      • $limit stage to limit the output to 10 results

      • $project stage to:

        • Exclude all fields except title and year

        • Add two fields named score and highlights

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • Iterates over the cursor to print the documents that match the query.

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundFunctionExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 var scoreFunction = Builders<MovieDocument>.SearchScore.Function(Builders<MovieDocument>.SearchScoreFunction.Add(Builders<MovieDocument>.SearchScoreFunction.Path(movie => movie.Imdb.Rating, 2), Builders<MovieDocument>.SearchScoreFunction.Relevance()));
    23 // define and run pipeline
    24 var results = moviesCollection.Aggregate()
    25 .Search(Builders<MovieDocument>.Search.Compound()
    26 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015)))
    27 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: scoreFunction)),
    28 new SearchHighlightOptions<MovieDocument>(movie => movie.Title),
    29 indexName: "compound-query-custom-score-tutorial")
    30 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    31 .Include(movie => movie.Genres)
    32 .Include(movie => movie.Title)
    33 .Include(movie => movie.Year)
    34 .Exclude(movie => movie.Id)
    35 .MetaSearchScore(movie => movie.Score)
    36 .MetaSearchHighlights("highlights"))
    37 .Limit(10)
    38 .ToList();
    39
    40 // print results
    41 foreach (var movie in results)
    42 {
    43 Console.WriteLine(movie.ToJson());
    44 }
    45 }
    46}
    47
    48[BsonIgnoreExtraElements]
    49public class MovieDocument
    50{
    51 [BsonIgnoreIfDefault]
    52 public ObjectId Id { get; set; }
    53 public string [] Genres { get; set; }
    54 public IMDB Imdb { get; set; }
    55 public string Title { get; set; }
    56 public int Year { get; set; }
    57 [BsonElement("highlights")]
    58 public List<SearchHighlight> Highlights { get; set; }
    59 public double Score { get; set; }
    60}
    61
    62[BsonIgnoreExtraElements]
    63public class IMDB
    64{
    65 public double Rating { get; set; }
    66}
  4. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  5. Compile and run the Program.cs file.

    dotnet run compound-function-example.csproj
    { "genres" : ["Drama", "Mystery"], "title" : "The Snow White Murder Case", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3525336980819702, "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }] }], "score" : 10.454826354980469 }
    { "genres" : ["Action", "Drama", "History"], "title" : "Snow on the Blades", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3766303062438965, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }] }], "score" : 10.331723213195801 }
    { "genres" : ["Action", "Comedy", "Horror"], "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3924485445022583, "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }] }], "score" : 10.032526969909668 }
    { "genres" : ["Thriller"], "title" : "Snow in Paradise", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3828467130661011, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }] }], "score" : 8.3861465454101562 }
    { "genres" : ["Adventure", "Comedy", "Drama"], "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Action", "Adventure", "Sci-Fi"], "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Action", "Comedy", "Drama"], "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Crime", "Drama", "Thriller"], "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Drama", "Thriller"], "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Drama", "Sci-Fi"], "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 1.0 }

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the function option.

1
  1. Create a file named compound-constant-query.go.

  2. Copy and paste the code example into the compound-constant-query.go file.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Uses the following compound clauses to query the collection:

      • filter clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the constant option. The constant option replaces all score results for the search term with 5.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • Uses the following pipeline stages:

      • $limit stage to limit the output to 10 results

      • $project stage to:

        • Exclude all fields except title and year

        • Add two fields named score and highlights

    • Iterates over the cursor to print the documents that match the query.

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13func main() {
    14 // connect to your Atlas cluster
    15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
    16 if err != nil {
    17 panic(err)
    18 }
    19 defer client.Disconnect(context.TODO())
    20
    21 // set namespace
    22 collection := client.Database("sample_mflix").Collection("movies")
    23
    24 // define pipeline stages
    25 searchStage := bson.D{{"$search", bson.M{
    26 "index": "compound-query-custom-score-tutorial",
    27 "compound": bson.M{
    28 "filter": bson.M{
    29 "range": bson.M{
    30 "path": "year", "gte": 2013, "lte": 2015,
    31 },
    32 },
    33 "should": bson.D{
    34 {"text", bson.M{
    35 "path": "title", "query": "snow", "score": bson.M{
    36 "constant": bson.D{{"value", 5}},
    37 }}}},
    38 },
    39 "highlight": bson.D{{"path", "title"}},
    40 }}}
    41 limitStage := bson.D{{"$limit", 10}}
    42 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}}
    43
    44 // specify the amount of time the operation can run on the server
    45 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    46
    47 // run pipeline
    48 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    49 if err != nil {
    50 panic(err)
    51 }
    52
    53 // print results
    54 var results []bson.D
    55 if err = cursor.All(context.TODO(), &results); err != nil {
    56 panic(err)
    57 }
    58 for _, result := range results {
    59 fmt.Println(result)
    60 }
    61}
  3. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  4. Run the following command to query your collection:

    go run compound-constant-query.go
    [{title Snow in Paradise} {year 2014} {score 5} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}]
    [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 5} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}]
    [{title The Snow White Murder Case} {year 2014} {score 5} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}]
    [{title Snow on the Blades} {year 2014} {score 5} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}]
    [{year 2013} {title The Secret Life of Walter Mitty} {score 0} {highlights []}]
    [{title Jurassic World} {year 2015} {score 0} {highlights []}]
    [{title Action Jackson} {year 2014} {score 0} {highlights []}]
    [{year 2013} {title In Secret} {score 0} {highlights []}]
    [{title The Stanford Prison Experiment} {year 2015} {score 0} {highlights []}]
    [{year 2014} {title The Giver} {score 0} {highlights []}]

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the constant option.

2
  1. Create a file named compound-boost-query.go.

  2. Copy and paste the code example into the compound-boost-query.go file.

    The code examples perform the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Iterates over the cursor to print the documents that match the query.

    The query uses the following pipeline stages:

    • $search stage to query the collection. The query:

      • Uses the following compound clauses to query the collection:

        • must clause with the range operator to search for movies between the years 2013 to 2015.

        • should clause with the text operator to query for the term snow in the title field and alter the score with the boost option. The boost option multiplies the base score in the results for the search term by 2.

      • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • $limit stage to limit the output to 10 results

    • $project stage to:

      • Exclude all fields except title and year

      • Add two fields named score and highlights

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13// define structure of movies collection
    14type MovieCollection struct {
    15 title string `bson:"Title,omitempty"`
    16}
    17
    18func main() {
    19 var err error
    20 // connect to the Atlas cluster
    21 ctx := context.Background()
    22 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
    23 if err != nil {
    24 panic(err)
    25 }
    26 defer client.Disconnect(ctx)
    27 // set namespace
    28 collection := client.Database("sample_mflix").Collection("movies")
    29 // define pipeline
    30 searchStage := bson.D{{"$search", bson.M{
    31 "index": "compound-query-custom-score-tutorial",
    32 "compound": bson.M{
    33 "must": bson.M{
    34 "range": bson.M{
    35 "path": "year", "gte": 2013, "lte": 2015,
    36 },
    37 },
    38 "should": bson.D{
    39 {"text", bson.M{
    40 "path": "title", "query": "snow", "score": bson.M{
    41 "boost": bson.D{{"value", 2}},
    42 },
    43 }},
    44 },
    45 },
    46 }}}
    47 limitStage := bson.D{{"$limit", 10}}
    48 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
    49 // specify the amount of time the operation can run on the server
    50 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    51 // run pipeline
    52 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    53 if err != nil {
    54 panic(err)
    55 }
    56 // print results
    57 var results []bson.D
    58 if err = cursor.All(context.TODO(), &results); err != nil {
    59 panic(err)
    60 }
    61 for _, result := range results {
    62 fmt.Println(result)
    63 }
    64}

    This query uses the following pipeline stages:

    • $search stage to query the collection. The query:

      • Uses the compound operator clauses with the boost option to prioritize some fields more than other fields:

        • must clause with the text operator to prioritize the genre comedy the most, followed by the term snow in the title field. The boost option applies weights to the fields.

        • should clause with the range operator to search for movies between the years 2013 to 2015.

        Note

        The boost option applies different weights to the fields to prioritize the fields.

    • $limit stage to limit the output to 10 results

    • $project stage to:

      • Exclude all fields except title and year

      • Add two fields named score and highlights

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13// define structure of movies collection
    14type MovieCollection struct {
    15 title string `bson:"Title,omitempty"`
    16}
    17
    18func main() {
    19 var err error
    20 // connect to the Atlas cluster
    21 ctx := context.Background()
    22 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
    23 if err != nil {
    24 panic(err)
    25 }
    26 defer client.Disconnect(ctx)
    27 // set namespace
    28 collection := client.Database("sample_mflix").Collection("movies")
    29 // define pipeline
    30 searchStage := bson.D{{"$search", bson.M{
    31 "index": "compound-query-custom-score-tutorial",
    32 "compound": bson.M{
    33 "must": bson.A{
    34 bson.M{
    35 "text": bson.M{
    36 "path": "genres", "query": "comedy", "score": bson.M{
    37 "boost": bson.D{{"value", 9}},
    38 },
    39 },
    40 },
    41 bson.M{
    42 "text": bson.M{
    43 "path": "title", "query": "snow", "score": bson.M{
    44 "boost": bson.D{{"value", 5}},
    45 },
    46 },
    47 },
    48 },
    49 "should": bson.M{
    50 "range": bson.M{
    51 "path": "year", "gte": 2013, "lte": 2015, "score": bson.M{
    52 "boost": bson.D{{"value", 3}},
    53 },
    54 },
    55 },
    56 },
    57 }}}
    58 limitStage := bson.D{{"$limit", 10}}
    59 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"genres", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
    60 // specify the amount of time the operation can run on the server
    61 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    62 // run pipeline
    63 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    64 if err != nil {
    65 panic(err)
    66 }
    67 // print results
    68 var results []bson.D
    69 if err = cursor.All(context.TODO(), &results); err != nil {
    70 panic(err)
    71 }
    72 for _, result := range results {
    73 fmt.Println(result)
    74 }
    75}
  3. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  4. Run the following command to query your collection:

    go run compound-boost-query.go
    [{title Snow in Paradise} {year 2014} {score 6.7722930908203125} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}]
    [{title Snow on the Blades} {year 2014} {score 6.063445568084717} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}]
    [{title The Snow White Murder Case} {year 2014} {score 5.509652137756348} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}]
    [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 5.065053939819336} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}]
    [{year 2013} {title The Secret Life of Walter Mitty} {score 1} {highlights []}]
    [{title Jurassic World} {year 2015} {score 1} {highlights []}]
    [{title Action Jackson} {year 2014} {score 1} {highlights []}]
    [{year 2013} {title In Secret} {score 1} {highlights []}]
    [{title The Stanford Prison Experiment} {year 2015} {score 1} {highlights []}]
    [{year 2014} {title The Giver} {score 1} {highlights []}]

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the boost option.

    go run compound-boost-query.go
    [
    {
    genres: [ 'Comedy', 'Horror' ],
    title: 'Dead Snow',
    year: 2009,
    score: 21.872983932495117
    },
    {
    year: 2000,
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Day',
    score: 21.043487548828125
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Dogs',
    year: 2002,
    score: 21.043487548828125
    },
    {
    year: 1999,
    genres: [ 'Comedy', 'Romance' ],
    title: 'Let It Snow',
    score: 19.523927688598633
    },
    {
    genres: [ 'Action', 'Comedy', 'Horror' ],
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 17.426334381103516
    },
    {
    genres: [ 'Comedy', 'Drama' ],
    title: 'Snow White and Russian Red',
    year: 2009,
    score: 16.367326736450195
    },
    {
    genres: [ 'Comedy', 'Drama', 'Romance' ],
    title: 'The Tiger and the Snow',
    year: 2005,
    score: 15.537829399108887
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow White and the Three Stooges',
    year: 1961,
    score: 14.4263334274292
    }
    ]
3
  1. Create a file named compound-boost-query.go.

  2. Copy and paste the code example into the compound-function-query.go file.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Uses the following compound operator clauses:

      • must clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the function option. The function option adds the following using an arithmetic expression:

        • The relevance score of the query for the search term

        • The value of the numeric field named imdb.rating or the number 2 for those documents that do not have the imdb.rating field.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • Uses the following pipeline stages:

      • $limit stage to limit the output to 10 results

      • $project stage to:

        • Exclude all fields except title and year

        • Add two fields named score and highlights

    • Iterates over the cursor to print the documents that match the query.

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13func main() {
    14 // connect to your Atlas cluster
    15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
    16 if err != nil {
    17 panic(err)
    18 }
    19 defer client.Disconnect(context.TODO())
    20
    21 // set namespace
    22 collection := client.Database("sample_mflix").Collection("movies")
    23
    24 // define pipeline
    25 searchStage := bson.D{{"$search", bson.M{
    26 "index": "compound-query-custom-score-tutorial",
    27 "compound": bson.M{
    28 "must": bson.M{
    29 "range": bson.M{
    30 "path": "year", "gte": 2013, "lte": 2015,
    31 },
    32 },
    33 "should": bson.D{
    34 {"text", bson.M{
    35 "path": "title", "query": "snow", "score": bson.M{
    36 "function": bson.D{{"add", bson.A{
    37 bson.D{{"path", bson.D{
    38 {"value", "imdb.rating"}, {"undefined", 2},
    39 }}},
    40 bson.D{{"score", "relevance"}},
    41 }}},
    42 }}}},
    43 },
    44 "highlight": bson.D{{"path", "title"}},
    45 }}}
    46 limitStage := bson.D{{"$limit", 10}}
    47 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}}
    48
    49 // specify the amount of time the operation can run on the server
    50 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    51
    52 // run pipeline
    53 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    54 if err != nil {
    55 panic(err)
    56 }
    57
    58 // print results
    59 var results []bson.D
    60 if err = cursor.All(context.TODO(), &results); err != nil {
    61 panic(err)
    62 }
    63 for _, result := range results {
    64 fmt.Println(result)
    65 }
    66}
  3. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  4. Run the following command to query your collection:

    go run compound-function-query.go
    [{title The Snow White Murder Case} {year 2014} {score 10.454826354980469} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}]
    [{title Snow on the Blades} {year 2014} {score 10.3317232131958} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}]
    [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 10.032526969909668} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}]
    [{title Snow in Paradise} {year 2014} {score 8.386146545410156} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}]
    [{year 2013} {title The Secret Life of Walter Mitty} {score 1} {highlights []}]
    [{title Jurassic World} {year 2015} {score 1} {highlights []}]
    [{title Action Jackson} {year 2014} {score 1} {highlights []}]
    [{year 2013} {title In Secret} {score 1} {highlights []}]
    [{title The Stanford Prison Experiment} {year 2015} {score 1} {highlights []}]
    [{year 2014} {title The Giver} {score 1} {highlights []}]

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the function option.

1
junit
4.11 or higher version
mongodb-driver-sync
4.3.0 or higher version
slf4j-log4j12
1.7.30 or higher version
2
  1. Create a file named CompoundConstantQuery.java.

  2. Copy and paste the following code into the file.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Uses the following compound clauses to query the collection:

      • filter clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the constant option. The constant option replaces all score results for the search term with 5.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • Uses the following pipeline stages:

      • $limit stage to limit the output to 10 results

      • $project stage to:

        • Exclude all fields except title and year

        • Add two fields named score and highlights

    • Iterates over the cursor to print the documents that match the query.

    1import java.util.Arrays;
    2import java.util.List;
    3
    4import static com.mongodb.client.model.Aggregates.limit;
    5import static com.mongodb.client.model.Aggregates.project;
    6import static com.mongodb.client.model.Projections.*;
    7import com.mongodb.client.MongoClient;
    8import com.mongodb.client.MongoClients;
    9import com.mongodb.client.MongoCollection;
    10import com.mongodb.client.MongoDatabase;
    11
    12import org.bson.Document;
    13
    14public class CompoundConstantQuery {
    15 public static void main( String[] args ) {
    16 // define clauses
    17 List<Document> mustClauses =
    18 List.of(
    19 new Document(
    20 "range", new Document("path", "year")
    21 .append("gte", 2013)
    22 .append("lte", 2015)));
    23 List<Document> shouldClauses =
    24 List.of(
    25 new Document("text",
    26 new Document("query", "snow")
    27 .append("path", "title")
    28 .append("score", new Document("constant", new Document("value", 5)))));
    29 Document highlightOption = new Document("path", "title");
    30 // define query
    31 Document agg =
    32 new Document("$search",
    33 new Document("index", "compound-query-custom-score-tutorial")
    34 .append("compound",
    35 new Document("must", mustClauses).append("should", shouldClauses))
    36 .append("highlight", highlightOption));
    37 // specify connection
    38 String uri = "<connection-string>";
    39 // establish connection and set namespace
    40 try (MongoClient mongoClient = MongoClients.create(uri)) {
    41 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    42 MongoCollection<Document> collection = database.getCollection("movies");
    43 // run query and print results
    44 collection.aggregate(Arrays.asList(agg,
    45 limit(10),
    46 project(fields(
    47 excludeId(),
    48 include("title", "year"),
    49 computed("score", new Document("$meta", "searchScore")),
    50 computed("highlights", new Document("$meta", "searchHighlights"))))))
    51 .forEach(doc -> System.out.println(doc.toJson()));
    52 }
    53 }
    54}

    Note

    To run the sample code in your Maven environment, add the following above the import statements in your file.

    package com.mongodb.drivers;
  3. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  4. Compile and run CompoundConstantQuery.java file.

    javac CompoundConstantQuery.java
    java CompoundConstantQuery
    {"title": "Snow in Paradise", "year": 2014, "score": 5.0, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]}
    {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]}
    {"title": "The Snow White Murder Case", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]}
    {"title": "Snow on the Blades", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]}
    {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 0.0, "highlights": []}
    {"title": "Jurassic World", "year": 2015, "score": 0.0, "highlights": []}
    {"title": "Action Jackson", "year": 2014, "score": 0.0, "highlights": []}
    {"year": 2013, "title": "In Secret", "score": 0.0, "highlights": []}
    {"title": "The Stanford Prison Experiment", "year": 2015, "score": 0.0, "highlights": []}
    {"year": 2014, "title": "The Giver", "score": 0.0, "highlights": []}

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the constant option.

3
  1. Create a file named CompoundBoostQuery.java.

  2. Copy and paste the following code into the file.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Iterates over the cursor to print the documents that match the query.

    The query uses the following pipeline stages:

    • $search stage to query the collection. The query:

      • Uses the following compound operator clauses:

        • must clause with the range operator to search for movies between the years 2013 to 2015.

        • should clause with the text operator to query for the term snow in the title field and alter the score with the boost option. The boost option multiplies the base score in the results for the search term by 2.

      Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • $limit stage to limit the output to 10 results

    • $project stage to:

      • Exclude all fields except title and year

      • Add two fields named score and highlights

    1import java.util.Arrays;
    2import java.util.List;
    3
    4import static com.mongodb.client.model.Aggregates.limit;
    5import static com.mongodb.client.model.Aggregates.project;
    6import static com.mongodb.client.model.Projections.*;
    7import com.mongodb.client.MongoClient;
    8import com.mongodb.client.MongoClients;
    9import com.mongodb.client.MongoCollection;
    10import com.mongodb.client.MongoDatabase;
    11import org.bson.Document;
    12
    13public class CompoundBoostQuery {
    14 public static void main( String[] args ) {
    15 // define clauses
    16 List<Document> mustClauses =
    17 List.of(
    18 new Document(
    19 "range", new Document("path", "year")
    20 .append("gte", 2013)
    21 .append("lte", 2015)));
    22 List<Document> shouldClauses =
    23 List.of(
    24 new Document(
    25 "text",
    26 new Document("query", "snow")
    27 .append("path", "title")
    28 .append("score", new Document("boost", new Document("value", 2)))));
    29 Document highlightOption = new Document("path", "title");
    30 // define query
    31 Document agg =
    32 new Document("$search",
    33 new Document("index", "compound-query-custom-score-tutorial")
    34 .append("compound",
    35 new Document("must", mustClauses).append("should", shouldClauses))
    36 .append("highlight", highlightOption));
    37 // specify connection
    38 String uri = "<connection-string>";
    39 // establish connection and set namespace
    40 try (MongoClient mongoClient = MongoClients.create(uri)) {
    41 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    42 MongoCollection<Document> collection = database.getCollection("movies");
    43 // run query and print results
    44 collection.aggregate(Arrays.asList(agg,
    45 limit(10),
    46 project(fields(
    47 excludeId(),
    48 include("title", "year"),
    49 computed("score", new Document("$meta", "searchScore")),
    50 computed("highlights", new Document("$meta", "searchHighlights"))))))
    51 .forEach(doc -> System.out.println(doc.toJson()));
    52 }
    53 }
    54}

    This query uses the following compound operator clauses with the boost option to prioritize some fields more than other fields:

    • must clause with the text operator to prioritize the genre comedy the most, followed by the term snow in the title field. The boost option applies weights to the fields.

    • should clause with the range operator to search for movies between the years 2013 to 2015.

    Note

    The boost option applies different weights to the fields to prioritize the fields.

    1import java.util.Arrays;
    2import static com.mongodb.client.model.Filters.eq;
    3import static com.mongodb.client.model.Aggregates.limit;
    4import static com.mongodb.client.model.Aggregates.project;
    5import static com.mongodb.client.model.Projections.computed;
    6import static com.mongodb.client.model.Projections.excludeId;
    7import static com.mongodb.client.model.Projections.fields;
    8import static com.mongodb.client.model.Projections.include;
    9import com.mongodb.client.MongoClient;
    10import com.mongodb.client.MongoClients;
    11import com.mongodb.client.MongoCollection;
    12import com.mongodb.client.MongoDatabase;
    13import org.bson.Document;
    14
    15public class CompoundBoostQuery {
    16 public static void main( String[] args ) {
    17 Document agg = new Document("index", "compound-query-custom-score-tutorial")
    18 .append("must", Arrays.asList(new Document("text",
    19 new Document("path", "genres")
    20 .append("query", "comedy")
    21 .append("score",
    22 new Document("boost",
    23 new Document("value", 9)))),
    24 new Document("text",
    25 new Document("path", "title")
    26 .append("query", "snow")
    27 .append("score",
    28 new Document("boost",
    29 new Document("value", 5))))))
    30 .append("should", Arrays.asList(new Document("range",
    31 new Document("path", "year")
    32 .append("gte", 2013)
    33 .append("lte", 2015)
    34 .append("score",
    35 new Document("boost",
    36 new Document("value", 3))))));
    37
    38 String uri = "<connection-string>";
    39
    40 try (MongoClient mongoClient = MongoClients.create(uri)) {
    41 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    42 MongoCollection<Document> collection = database.getCollection("movies");
    43
    44 collection.aggregate(Arrays.asList(
    45 eq("$search", eq("compound", agg)),
    46 limit(10),
    47 project(fields(excludeId(), include("title", "year","genres"), computed("score", new Document("$meta", "searchScore")))))
    48 ).forEach(doc -> System.out.println(doc.toJson()));
    49 }
    50 }
    51}

    Note

    To run the sample code in your Maven environment, add the following above the import statements in your file.

    package com.mongodb.drivers;
  3. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  4. Compile and run CompoundBoostQuery.java file.

    javac CompoundBoostQuery.java
    java CompoundBoostQuery
    {"title": "Snow in Paradise", "year": 2014, "score": 6.7722930908203125, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]}
    {"title": "Snow on the Blades", "year": 2014, "score": 6.063445568084717, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]}
    {"title": "The Snow White Murder Case", "year": 2014, "score": 5.509652137756348, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]}
    {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 5.065053939819336, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]}
    {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 1.0, "highlights": []}
    {"title": "Jurassic World", "year": 2015, "score": 1.0, "highlights": []}
    {"title": "Action Jackson", "year": 2014, "score": 1.0, "highlights": []}
    {"year": 2013, "title": "In Secret", "score": 1.0, "highlights": []}
    {"title": "The Stanford Prison Experiment", "year": 2015, "score": 1.0, "highlights": []}
    {"year": 2014, "title": "The Giver", "score": 1.0, "highlights": []}

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the boost option.

    javac CompoundBoostQuery.java
    java CompoundBoostQuery
    {
    "genres": ["Comedy", "Horror"],
    "title": "Dead Snow",
    "year": 2009,
    "score": 21.872983932495117
    }
    {
    "year": 2000,
    "genres": ["Adventure", "Comedy", "Family"],
    "title": "Snow Day",
    "score": 21.043487548828125
    }
    {
    "genres": ["Adventure", "Comedy", "Family"],
    "title": "Snow Dogs",
    "year": 2002,
    "score": 21.043487548828125
    }
    {
    "year": 1999,
    "genres": ["Comedy", "Romance"],
    "title": "Let It Snow",
    "score": 19.523927688598633
    }
    {
    "genres": ["Action", "Comedy", "Horror"],
    "title": "Dead Snow 2: Red vs. Dead",
    "year": 2014,
    "score": 17.426334381103516
    }
    {
    "genres": ["Comedy", "Drama"],
    "title": "Snow White and Russian Red",
    "year": 2009,
    "score": 16.367326736450195}
    {
    "genres": ["Comedy", "Drama", "Romance"],
    "title": "The Tiger and the Snow",
    "year": 2005,
    "score": 15.537829399108887
    }
    {
    "genres": ["Adventure", "Comedy", "Family"],
    "title": "Snow White and the Three Stooges",
    "year": 1961,
    "score": 14.4263334274292
    }
4
  1. Create a file named CompoundFunctionQuery.java.

  2. Copy and paste the following code into the file.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Uses the following pipeline stages to query the collection:

      • must clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the function option. The function option adds the following using an arithmetic expression:

        • The relevance score of the query for the search term

        • The value of the numeric field named imdb.rating or the number 2 for those documents that do not have the imdb.rating field.

    • Uses the following pipeline stages:

      • $limit stage to limit the output to 10 results

      • $project stage to:

        • Exclude all fields except title and year

        • Add two fields named score and highlights

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • Iterates over the cursor to print the documents that match the query.

    1import java.util.Arrays;
    2import java.util.List;
    3
    4import static com.mongodb.client.model.Aggregates.limit;
    5import static com.mongodb.client.model.Aggregates.project;
    6import static com.mongodb.client.model.Projections.*;
    7import com.mongodb.client.MongoClient;
    8import com.mongodb.client.MongoClients;
    9import com.mongodb.client.MongoCollection;
    10import com.mongodb.client.MongoDatabase;
    11import org.bson.Document;
    12
    13public class CompoundFunctionQuery {
    14 public static void main( String[] args ) {
    15 // define clauses
    16 List<Document> mustClauses =
    17 List.of(
    18 new Document("range", new Document("path", "year")
    19 .append("gte", 2013)
    20 .append("lte", 2015)));
    21 List<Document> shouldClauses =
    22 List.of(
    23 new Document("text",
    24 new Document("query", "snow")
    25 .append("path", "title")
    26 .append("score", new Document("function",
    27 new Document("add", Arrays.asList(
    28 new Document("path", new Document("value", "imdb.rating")
    29 .append("undefined", 2)), new Document("score", "relevance")))))));
    30 Document highlightOption = new Document("path", "title");
    31 // define query
    32 Document agg =
    33 new Document("$search",
    34 new Document("index", "compound-query-custom-score-tutorial")
    35 .append("compound",
    36 new Document("must", mustClauses).append("should", shouldClauses))
    37 .append("highlight", highlightOption));
    38 // specify connection
    39 String uri = "<connection-string>";
    40 // establish connection and set namespace
    41 try (MongoClient mongoClient = MongoClients.create(uri)) {
    42 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    43 MongoCollection<Document> collection = database.getCollection("movies");
    44 // run query and print results
    45 collection.aggregate(Arrays.asList(agg,
    46 limit(10),
    47 project(fields(
    48 excludeId(),
    49 include("title", "year"),
    50 computed("score", new Document("$meta", "searchScore")),
    51 computed("highlights", new Document("$meta", "searchHighlights"))))))
    52 .forEach(doc -> System.out.println(doc.toJson()));
    53 }
    54 }
    55}

    Note

    To run the sample code in your Maven environment, add the following above the import statements in your file.

    package com.mongodb.drivers;
  3. Before you run the sample, replace <connection-string> with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.

  4. Compile and run CompoundFunctionQuery.java file.

    javac CompoundFunctionQuery.java
    java CompoundFunctionQuery
    {"title": "The Snow White Murder Case", "year": 2014, "score": 10.454826354980469, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]}
    {"title": "Snow on the Blades", "year": 2014, "score": 10.3317232131958, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]}
    {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 10.032526969909668, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]}
    {"title": "Snow in Paradise", "year": 2014, "score": 8.386146545410156, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]}
    {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 1.0, "highlights": []}
    {"title": "Jurassic World", "year": 2015, "score": 1.0, "highlights": []}
    {"title": "Action Jackson", "year": 2014, "score": 1.0, "highlights": []}
    {"year": 2013, "title": "In Secret", "score": 1.0, "highlights": []}
    {"title": "The Stanford Prison Experiment", "year": 2015, "score": 1.0, "highlights": []}
    {"year": 2014, "title": "The Giver", "score": 1.0, "highlights": []}

    The first four documents in the results have a higher score because the should clause in the query specifies a preference for documents with snow in the title. The should clause also alters the score for the query term snow using the function option.

1
mongodb-driver-kotlin-coroutine
4.10.0 or higher version
2
  1. Create a file named CompoundConstantQuery.kt.

  2. Copy and paste the following code into the file.

    The code example performs the following tasks:

    • Imports mongodb packages and dependencies.

    • Establishes a connection to your Atlas cluster.

    • Uses the following compound clauses to query the collection:

      • filter clause with the range operator to search for movies between the years 2013 to 2015.

      • should clause with the text operator to query for the term snow in the title field and alter the score with the constant option. The constant option replaces all score results for the search term with 5.

    • Specifies the highlight option to return snippets of text from the title field that match the query. The snippets contain matching text specified with type: 'hit', and adjacent text specified with type: 'text'.

    • Uses the following pipeline stages:

      • $limit stage to limit the output to 10 results

      • $project stage to:

        • Exclude all fields except title and year

        • Add two fields named score and highlights

    • Prints the documents that match the query from the AggregateFlow instance.

    1import com.mongodb.client.model.Aggregates.limit
    2import com.mongodb.client.model.Aggregates.project
    3import com.mongodb.client.model.Projections.*
    4import com.mongodb.kotlin.client.coroutine.MongoClient
    5import kotlinx.coroutines.runBlocking
    6import org.bson.Document
    7
    8fun main() {
    9 // establish connection and set namespace
    10 val uri = "<connection-string>"
    11 val mongoClient = MongoClient.create(uri)
    12 val database = mongoClient.getDatabase("sample_mflix")
    13 val collection = database.getCollection<Document>("movies")
    14
    15 runBlocking {
    16 // define clauses
    17 val mustClauses = listOf(
    18 Document(
    19