Docs Menu
Docs Home
/
MongoDB Manual
/ /

Query on Embedded/Nested Documents

On this page

  • Query on Nested Field with Dot Notation
  • Match an Embedded/Nested Document
  • Query Embedded Documents with MongoDB Atlas
  • Additional Query Tutorials

You can query embedded documents in MongoDB by using the following methods:

  • Your programming language's driver.

  • The MongoDB Atlas UI. To learn more, see Query Embedded Documents with MongoDB Atlas.

  • MongoDB Compass.


➤ Use the Select your language drop-down menu in the upper-right to set the language of the following examples or select MongoDB Compass.


This page provides examples of query operations on embedded/nested documents using the db.collection.find() method in mongosh.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using MongoDB Compass.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the MongoCollection.Find() method in the MongoDB C# Driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the Collection.Find function in the MongoDB Go Driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the com.mongodb.reactivestreams.client.MongoCollection.find method in the MongoDB Java Reactive Streams Driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the com.mongodb.client.MongoCollection.find method in the MongoDB Java Synchronous Driver.

Tip

The driver provides com.mongodb.client.model.Filters helper methods to facilitate the creation of filter documents. The examples on this page use these methods to create the filter documents.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the motor.motor_asyncio.AsyncIOMotorCollection.find method in the Motor driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the Collection.find() method in the MongoDB Node.js Driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the MongoDB::Collection::find() method in the MongoDB Perl Driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the MongoDB\\Collection::find() method in the MongoDB PHP Library.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the pymongo.collection.Collection.find method in the PyMongo Python driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the Mongo::Collection#find() method in the MongoDB Ruby Driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

This page provides examples of query operations on embedded/nested documents using the collection.find() method in the MongoDB Scala Driver.

The examples on this page use the inventory collection. Connect to a test database in your MongoDB instance then create the inventory collection:

db.inventory.insertMany( [
{ item: "journal", qty: 25, size: { h: 14, w: 21, uom: "cm" }, status: "A" },
{ item: "notebook", qty: 50, size: { h: 8.5, w: 11, uom: "in" }, status: "A" },
{ item: "paper", qty: 100, size: { h: 8.5, w: 11, uom: "in" }, status: "D" },
{ item: "planner", qty: 75, size: { h: 22.85, w: 30, uom: "cm" }, status: "D" },
{ item: "postcard", qty: 45, size: { h: 10, w: 15.25, uom: "cm" }, status: "A" }
]);
[
{ "item": "journal", "qty": 25, "size": { "h": 14, "w": 21, "uom": "cm" }, "status": "A" },
{ "item": "notebook", "qty": 50, "size": { "h": 8.5, "w": 11, "uom": "in" }, "status": "A" },
{ "item": "paper", "qty": 100, "size": { "h": 8.5, "w": 11, "uom": "in" }, "status": "D" },
{ "item": "planner", "qty": 75, "size": { "h": 22.85, "w": 30, "uom": "cm" }, "status": "D" },
{ "item": "postcard", "qty": 45, "size": { "h": 10, "w": 15.25, "uom": "cm" }, "status": "A" }
]

For instructions on inserting documents in MongoDB Compass, see Insert Documents.

var documents = new[]
{
new BsonDocument
{
{ "item", "journal" },
{ "qty", 25 },
{ "size", new BsonDocument { { "h", 14 }, { "w", 21 }, { "uom", "cm" } } },
{ "status", "A" }
},
new BsonDocument
{
{ "item", "notebook" },
{ "qty", 50 },
{ "size", new BsonDocument { { "h", 8.5 }, { "w", 11 }, { "uom", "in" } } },
{ "status", "A" }
},
new BsonDocument
{
{ "item", "paper" },
{ "qty", 100 },
{ "size", new BsonDocument { { "h", 8.5 }, { "w", 11 }, { "uom", "in" } } },
{ "status", "D" }
},
new BsonDocument
{
{ "item", "planner" },
{ "qty", 75 },
{ "size", new BsonDocument { { "h", 22.85 }, { "w", 30 }, { "uom", "cm" } } },
{ "status", "D" }
},
new BsonDocument
{
{ "item", "postcard" },
{ "qty", 45 },
{ "size", new BsonDocument { { "h", 10 }, { "w", 15.25 }, { "uom", "cm" } } },
{ "status", "A" } },
};
collection.InsertMany(documents);
docs := []interface{}{
bson.D{
{"item", "journal"},
{"qty", 25},
{"size", bson.D{
{"h", 14},
{"w", 21},
{"uom", "cm"},
}},
{"status", "A"},
},
bson.D{
{"item", "notebook"},
{"qty", 50},
{"size", bson.D{
{"h", 8.5},
{"w", 11},
{"uom", "in"},
}},
{"status", "A"},
},
bson.D{
{"item", "paper"},
{"qty", 100},
{"size", bson.D{
{"h", 8.5},
{"w", 11},
{"uom", "in"},
}},
{"status", "D"},
},
bson.D{
{"item", "planner"},
{"qty", 75},
{"size", bson.D{
{"h", 22.85},
{"w", 30},
{"uom", "cm"},
}},
{"status", "D"},
},
bson.D{
{"item", "postcard"},
{"qty", 45},
{"size", bson.D{
{"h", 10},
{"w", 15.25},
{"uom", "cm"},
}},
{"status", "A"},
},
}
result, err := coll.InsertMany(context.TODO(), docs)
Publisher<Success> insertManyPublisher = collection.insertMany(asList(
Document.parse("{ item: 'journal', qty: 25, size: { h: 14, w: 21, uom: 'cm' }, status: 'A' }"),
Document.parse("{ item: 'notebook', qty: 50, size: { h: 8.5, w: 11, uom: 'in' }, status: 'A' }"),
Document.parse("{ item: 'paper', qty: 100, size: { h: 8.5, w: 11, uom: 'in' }, status: 'D' }"),
Document.parse("{ item: 'planner', qty: 75, size: { h: 22.85, w: 30, uom: 'cm' }, status: 'D' }"),
Document.parse("{ item: 'postcard', qty: 45, size: { h: 10, w: 15.25, uom: 'cm' }, status: 'A' }")
));
collection.insertMany(asList(
Document.parse("{ item: 'journal', qty: 25, size: { h: 14, w: 21, uom: 'cm' }, status: 'A' }"),
Document.parse("{ item: 'notebook', qty: 50, size: { h: 8.5, w: 11, uom: 'in' }, status: 'A' }"),
Document.parse("{ item: 'paper', qty: 100, size: { h: 8.5, w: 11, uom: 'in' }, status: 'D' }"),
Document.parse("{ item: 'planner', qty: 75, size: { h: 22.85, w: 30, uom: 'cm' }, status: 'D' }"),
Document.parse("{ item: 'postcard', qty: 45, size: { h: 10, w: 15.25, uom: 'cm' }, status: 'A' }")
));
# Subdocument key order matters in a few of these examples so we have
# to use bson.son.SON instead of a Python dict.
from bson.son import SON
await db.inventory.insert_many(
[
{
"item": "journal",
"qty": 25,
"size": SON([("h", 14), ("w", 21), ("uom", "cm")]),
"status": "A",
},
{
"item": "notebook",
"qty": 50,
"size": SON([("h", 8.5), ("w", 11), ("uom", "in")]),
"status": "A",
},
{
"item": "paper",
"qty": 100,
"size": SON([("h", 8.5), ("w", 11), ("uom", "in")]),
"status": "D",
},
{
"item": "planner",
"qty": 75,
"size": SON([("h", 22.85), ("w", 30), ("uom", "cm")]),
"status": "D",
},
{
"item": "postcard",
"qty": 45,
"size": SON([("h", 10), ("w", 15.25), ("uom", "cm")]),
"status": "A",
},
]
)
await db.collection('inventory').insertMany([
{
item: 'journal',
qty: 25,
size: { h: 14, w: 21, uom: 'cm' },
status: 'A'
},
{
item: 'notebook',
qty: 50,
size: { h: 8.5, w: 11, uom: 'in' },
status: 'A'
},
{
item: 'paper',
qty: 100,
size: { h: 8.5, w: 11, uom: 'in' },
status: 'D'
},
{
item: 'planner',
qty: 75,
size: { h: 22.85, w: 30, uom: 'cm' },
status: 'D'
},
{
item: 'postcard',
qty: 45,
size: { h: 10, w: 15.25, uom: 'cm' },
status: 'A'
}
]);
# Subdocument key order matters in this example so we have
# to use Tie::IxHash instead of a regular, unordered Perl hash.
$db->coll("inventory")->insert_many(
[
{
item => "journal",
qty => 25,
size => Tie::IxHash->new( h => 14, w => 21, uom => "cm" ),
status => "A"
},
{
item => "notebook",
qty => 50,
size => Tie::IxHash->new( h => 8.5, w => 11, uom => "in" ),
status => "A"
},
{
item => "paper",
qty => 100,
size => Tie::IxHash->new( h => 8.5, w => 11, uom => "in" ),
status => "D"
},
{
item => "planner",
qty => 75,
size => Tie::IxHash->new( h => 22.85, w => 30, uom => "cm" ),
status => "D"
},
{
item => "postcard",
qty => 45,
size => Tie::IxHash->new( h => 10, w => 15.25, uom => "cm" ),
status => "A"
}
]
);
$insertManyResult = $db->inventory->insertMany([
[
'item' => 'journal',
'qty' => 25,
'size' => ['h' => 14, 'w' => 21, 'uom' => 'cm'],
'status' => 'A',
],
[
'item' => 'notebook',
'qty' => 50,
'size' => ['h' => 8.5, 'w' => 11, 'uom' => 'in'],
'status' => 'A',
],
[
'item' => 'paper',
'qty' => 100,
'size' => ['h' => 8.5, 'w' => 11, 'uom' => 'in'],
'status' => 'D',
],
[
'item' => 'planner',
'qty' => 75,
'size' => ['h' => 22.85, 'w' => 30, 'uom' => 'cm'],
'status' => 'D',
],
[
'item' => 'postcard',
'qty' => 45,
'size' => ['h' => 10, 'w' => 15.25, 'uom' => 'cm'],
'status' => 'A',
],
]);
# Subdocument key order matters in a few of these examples so we have
# to use bson.son.SON instead of a Python dict.
from bson.son import SON
db.inventory.insert_many(
[
{
"item": "journal",
"qty": 25,
"size": SON([("h", 14), ("w", 21), ("uom", "cm")]),
"status": "A",
},
{
"item": "notebook",
"qty": 50,
"size": SON([("h", 8.5), ("w", 11), ("uom", "in")]),
"status": "A",
},
{
"item": "paper",
"qty": 100,
"size": SON([("h", 8.5), ("w", 11), ("uom", "in")]),
"status": "D",
},
{
"item": "planner",
"qty": 75,
"size": SON([("h", 22.85), ("w", 30), ("uom", "cm")]),
"status": "D",
},
{
"item": "postcard",
"qty": 45,
"size": SON([("h", 10), ("w", 15.25), ("uom", "cm")]),
"status": "A",
},
]
)
client[:inventory].insert_many([
{ item: 'journal',
qty: 25,
size: { h: 14, w: 21, uom: 'cm' },
status: 'A' },
{ item: 'notebook',
qty: 50,
size: { h: 8.5, w: 11, uom: 'in' },
status: 'A' },
{ item: 'paper',
qty: 100,
size: { h: 8.5, w: 11, uom: 'in' },
status: 'D' },
{ item: 'planner',
qty: 75,
size: { h: 22.85, w: 30, uom: 'cm' },
status: 'D' },
{ item: 'postcard',
qty: 45,
size: { h: 10, w: 15.25, uom: 'cm' },
status: 'A' }
])
collection.insertMany(Seq(
Document("""{ item: "journal", qty: 25, size: { h: 14, w: 21, uom: "cm" }, status: "A" }"""),
Document("""{ item: "notebook", qty: 50, size: { h: 8.5, w: 11, uom: "in" }, status: "A" }"""),
Document("""{ item: "paper", qty: 100, size: { h: 8.5, w: 11, uom: "in" }, status: "D" }"""),
Document("""{ item: "planner", qty: 75, size: { h: 22.85, w: 30, uom: "cm" }, status: "D" }"""),
Document("""{ item: "postcard", qty: 45, size: { h: 10, w: 15.25, uom: "cm" }, status: "A" }""")
)).execute()

To specify a query condition on fields in an embedded/nested document, use dot notation ("field.nestedField").

Note

When querying using dot notation, the field and nested field must be inside quotation marks.

The following example selects all documents where the field uom nested in the size field equals "in":

db.inventory.find( { "size.uom": "in" } )

Copy the following filter into the Compass query bar and click Find:

{ "size.uom": "in" }
var filter = Builders<BsonDocument>.Filter.Eq("size.uom", "in");
var result = collection.Find(filter).ToList();
cursor, err := coll.Find(
context.TODO(),
bson.D{{"size.uom", "in"}},
)
findPublisher = collection.find(eq("size.uom", "in"));
findIterable = collection.find(eq("size.uom", "in"));
cursor = db.inventory.find({"size.uom": "in"})
const cursor = db.collection('inventory').find({
'size.uom': 'in'
});
$cursor = $db->coll("inventory")->find( { "size.uom" => "in" } );
$cursor = $db->inventory->find(['size.uom' => 'in']);
cursor = db.inventory.find({"size.uom": "in"})
client[:inventory].find('size.uom' => 'in')
findObservable = collection.find(equal("size.uom", "in"))

A query filter document can use the query operators to specify conditions in the following form:

{ <field1>: { <operator1>: <value1> }, ... }

A query filter document can use the query operators to specify conditions in the following form:

{ <field1>: { <operator1>: <value1> }, ... }

In addition to the equality filter, MongoDB provides various query operators to specify filter conditions. Use the FilterDefinitionBuilder methods to create a filter document. For example:

var builder = Builders<BsonDocument>.Filter;
builder.And(builder.Eq(<field1>, <value1>), builder.Lt(<field2>, <value2>));

In addition to the equality condition, MongoDB provides various query operators to specify filter conditions. Use the com.mongodb.client.model.Filters helper methods to facilitate the creation of filter documents. For example:

and(gte(<field1>, <value1>), lt(<field2>, <value2>), eq(<field3>, <value3>))

In addition to the equality condition, MongoDB provides various query operators to specify filter conditions. Use the com.mongodb.client.model.Filters helper methods to facilitate the creation of filter documents. For example:

and(gte(<field1>, <value1>), lt(<field2>, <value2>), eq(<field3>, <value3>))

A query filter document can use the query operators to specify conditions in the following form:

{ <field1>: { <operator1>: <value1> }, ... }

A query filter document can use the query operators to specify conditions in the following form:

{ <field1>: { <operator1>: <value1> }, ... }

A query filter document can use the query operators to specify conditions in the following form:

{ <field1> => { <operator1> => <value1> }, ... }

A query filter document can use the query operators to specify conditions in the following form:

[ <field1> => [ <operator1> => <value1> ], ... ]

A query filter document can use the query operators to specify conditions in the following form:

{ <field1>: { <operator1>: <value1> }, ... }

A query filter document can use the query operators to specify conditions in the following form:

{ <field1> => { <operator1> => <value1> }, ... }

In addition to the equality condition, MongoDB provides various query operators to specify filter conditions. Use the com.mongodb.client.model.Filters_ helper methods to facilitate the creation of filter documents. For example:

and(gte(<field1>, <value1>), lt(<field2>, <value2>), equal(<field3>, <value3>))

The following query uses the less than operator ($lt) on the field h embedded in the size field:

db.inventory.find( { "size.h": { $lt: 15 } } )

Copy the following filter into the Compass query bar and click Find:

{ "size.h": { $lt: 15 } }
var filter = Builders<BsonDocument>.Filter.Lt("size.h", 15);
var result = collection.Find(filter).ToList();
cursor, err := coll.Find(
context.TODO(),
bson.D{
{"size.h", bson.D{
{"$lt", 15},
}},
})
findPublisher = collection.find(lt("size.h", 15));
findIterable = collection.find(lt("size.h", 15));
cursor = db.inventory.find({"size.h": {"$lt": 15}})
const cursor = db.collection('inventory').find({
'size.h': { $lt: 15 }
});
$cursor = $db->coll("inventory")->find( { "size.h" => { '$lt' => 15 } } );
$cursor = $db->inventory->find(['size.h' => ['$lt' => 15]]);
cursor = db.inventory.find({"size.h": {"$lt": 15}})
client[:inventory].find('size.h' => { '$lt' => 15 })
findObservable = collection.find(lt("size.h", 15))

The following query selects all documents where the nested field h is less than 15, the nested field uom equals "in", and the status field equals "D":

db.inventory.find( { "size.h": { $lt: 15 }, "size.uom": "in", status: "D" } )

Copy the following filter into the Compass query bar and click Find:

{ "size.h": { $lt: 15 }, "size.uom": "in", status: "D" }
Query multiple nested fields
var builder = Builders<BsonDocument>.Filter;
var filter = builder.And(builder.Lt("size.h", 15), builder.Eq("size.uom", "in"), builder.Eq("status", "D"));
var result = collection.Find(filter).ToList();
cursor, err := coll.Find(
context.TODO(),
bson.D{
{"size.h", bson.D{
{"$lt", 15},
}},
{"size.uom", "in"},
{"status", "D"},
})
findPublisher = collection.find(and(
lt("size.h", 15),
eq("size.uom", "in"),
eq("status", "D")
));
findIterable = collection.find(and(
lt("size.h", 15),
eq("size.uom", "in"),
eq("status", "D")
));
cursor = db.inventory.find({"size.h": {"$lt": 15}, "size.uom": "in", "status": "D"})
const cursor = db.collection('inventory').find({
'size.h': { $lt: 15 },
'size.uom': 'in',
status: 'D'
});
$cursor = $db->coll("inventory")->find(
{ "size.h" => { '$lt' => 15 }, "size.uom" => "in", status => "D" }
);
$cursor = $db->inventory->find([
'size.h' => ['$lt' => 15],
'size.uom' => 'in',
'status' => 'D',
]);
cursor = db.inventory.find({"size.h": {"$lt": 15}, "size.uom": "in", "status": "D"})
client[:inventory].find('size.h' => { '$lt' => 15 },
'size.uom' => 'in',
'status' => 'D')
findObservable = collection.find(and(
lt("size.h", 15),
equal("size.uom", "in"),
equal("status", "D")
))

To specify an equality condition on a field that is an embedded/nested document, use the query filter document { <field>: <value> } where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the query filter document { <field>: <value> } where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, construct a filter using the Eq method:

Builders<BsonDocument>.Filter.Eq(<field>, <value>)

<value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the filter document eq( <field1>, <value>) where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the filter document eq( <field1>, <value>) where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the query filter document { <field>: <value> } where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the query filter document { <field>: <value> } where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the query filter document { <field> => <value> } where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the query filter document [ <field> => <value> ] where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the query filter document { <field>: <value> } where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the query filter document { <field> => <value> } where <value> is the document to match.

To specify an equality condition on a field that is an embedded/nested document, use the filter document equal( <field1>, <value> ) where <value> is the document to match.

For example, the following query selects all documents where the field size equals the document { h: 14, w: 21, uom: "cm" }:

db.inventory.find( { size: { h: 14, w: 21, uom: "cm" } } )

Copy the following filter into the Compass query bar and click Find:

{ size: { h: 14, w: 21, uom: "cm" } }
Query embedded field
var filter = Builders<BsonDocument>.Filter.Eq("size", new BsonDocument { { "h", 14 }, { "w", 21 }, { "uom", "cm" } });
var result = collection.Find(filter).ToList();
cursor, err := coll.Find(
context.TODO(),
bson.D{
{"size", bson.D{
{"h", 14},
{"w", 21},
{"uom", "cm"},
}},
})
FindPublisher<Document> findPublisher = collection.find(eq("size", Document.parse("{ h: 14, w: 21, uom: 'cm' }")));
FindIterable<Document> findIterable = collection.find(eq("size", Document.parse("{ h: 14, w: 21, uom: 'cm' }")));
cursor = db.inventory.find({"size": SON([("h", 14), ("w", 21), ("uom", "cm")])})
const cursor = db.collection('inventory').find({
size: { h: 14, w: 21, uom: 'cm' }
});
# Subdocument key order matters in this example so we have
# to use Tie::IxHash instead of a regular, unordered Perl hash.
$cursor = $db->coll("inventory")->find(
{ size => Tie::IxHash->new( h => 14, w => 21, uom => "cm" ) }
);
$cursor = $db->inventory->find(['size' => ['h' => 14, 'w' => 21, 'uom' => 'cm']]);
cursor = db.inventory.find({"size": SON([("h", 14), ("w", 21), ("uom", "cm")])})
client[:inventory].find(size: { h: 14, w: 21, uom: 'cm' })
var findObservable = collection.find(equal("size", Document("h" -> 14, "w" -> 21, "uom" -> "cm")))

Warning

MongoDB does not recommend comparisons on embedded documents because the operations require an exact match of the specified <value> document, including the field order.

For example, the following query does not match any documents in the inventory collection:

db.inventory.find( { size: { w: 21, h: 14, uom: "cm" } } )
Query embedded field
var filter = Builders<BsonDocument>.Filter.Eq("size", new BsonDocument { { "w", 21 }, { "h", 14 }, { "uom", "cm" } });
var result = collection.Find(filter).ToList();
cursor, err := coll.Find(
context.TODO(),
bson.D{
{"size", bson.D{
{"w", 21},
{"h", 14},
{"uom", "cm"},
}},
})
findPublisher = collection.find(eq("size", Document.parse("{ w: 21, h: 14, uom: 'cm' }")));
findIterable = collection.find(eq("size", Document.parse("{ w: 21, h: 14, uom: 'cm' }")));
cursor = db.inventory.find({"size": SON([("w", 21), ("h", 14), ("uom", "cm")])})
const cursor = db.collection('inventory').find({
size: { w: 21, h: 14, uom: 'cm' }
});
# Subdocument key order matters in this example so we have
# to use Tie::IxHash instead of a regular, unordered Perl hash.
$cursor = $db->coll("inventory")->find(
{ size => Tie::IxHash->new( w => 21, h => 14, uom => "cm" ) }
);
$cursor = $db->inventory->find(['size' => ['w' => 21, 'h' => 14, 'uom' => 'cm']]);
cursor = db.inventory.find({"size": SON([("w", 21), ("h", 14), ("uom", "cm")])})
client[:inventory].find(size: { h: 21, w: 14, uom: 'cm' })
findObservable = collection.find(equal("size", Document("w" -> 21, "h" -> 14, "uom" -> "cm")))

Queries that use comparisons on embedded documents can result in unpredictable behavior when used with a driver that does not use ordered data structures for expressing queries.

The example in this section uses the sample movies dataset. To learn how to load the sample dataset into your MongoDB Atlas deployment, see Load Sample Data.

To query an embedded document in MongoDB Atlas, follow these steps:

1
  1. In the MongoDB Atlas UI, click Database in the sidebar.

  2. For the database deployment that contains the sample data, click Browse Collections.

  3. In the left navigation pane, select the sample_mflix database.

  4. Select the movies collection.

2

Specify the query filter document in the Filter field. A query filter document uses query operators to specify search conditions.

Copy the following query filter document into the Filter search bar:

{ "awards.wins": 1 }
3

This query filter returns all documents in the sample_mflix.movies collection where the embedded document for the awards field contains { wins: 1 }.

For additional query examples, see:

Back

Query

Next

Arrays