Product Updates

The most recent MongoDB product releases and updates

Exploring New Security, Billing, and Customization Features in Atlas Charts

MongoDB is excited to announce a few new updates to Atlas Charts that enable you to securely share insights, gain deeper visibility into expenses, and customize your most frequently used data visualizations. Based on specific feedback received from users of our native visualization tool, these significant improvements will make data analysis even more productive. We: Improved security in Atlas Charts for passcode-protected public dashboards Increased visibility into Atlas spending through an updated billing dashboard Introduced new customization for table charts through hyperlinks and hidden columns Secure insights with passcode-protected public dashboards First, there’s the new passcode-protected public dashboards feature that brings an extra layer of security to publicly shared dashboards—we understand that not everyone who benefits from Atlas Charts operates within MongoDB Atlas. Alongside the ability to schedule email reports and support for publicly-shared dashboards , we’re offering a new and secure way to spread insights with the launch of our latest feature. Add an extra layer of security to previously publicly shared dashboards, ensuring that only authorized users with the passcode can access your data. Enabling passcode protection on a dashboard is simple. As a dashboard owner, a new option is available to protect dashboard links with a passcode when sharing it publicly. Check the box to protect your public link with a passcode Once enabled, a passcode is automatically generated and can be copied to the clipboard (and regenerated on demand as needed). Viewers navigating to dashboards via the public link will see a new screen prompting them to enter a passcode. Once authenticated successfully, they can view the dashboard just as before. Easily access your dashboards by inputting your password when prompted Whether you're sharing insights with clients, stakeholders, or team members, rest assured that your data remains easily accessible yet secure. To learn more about the different ways we support dashboard sharing, check out our documentation . What’s new in the Atlas Charts billing dashboard Next, we continue to make enhancements to the MongoDB Atlas Charts billing dashboard , all of which provide insights into Atlas expenses. We are delighted to share that it’s now possible to see resource tags data, as well as billing data from all linked organizations inside the Atlas Charts billing dashboard. Additionally, users can now ingest billing data from another organization, provided they possess the organization’s API keys. These newly introduced features rely on the availability of billing data within the organization. And for those leveraging resource tags, the billing data will seamlessly integrate, empowering users to generate personalized charts or to incorporate tailored dashboard filters within the Atlas Charts billing dashboard. If cross-organization billing is enabled, editing the configuration will ingest the linked organization’s billing data for the last three months, with the option to extend this period to up to a year by creating a new ingestion. Project tags data in the Atlas Charts billing dashboard Resource tags are now seamlessly integrated into billing data and can be included in any of the charts or the dashboard filters inside the Atlas billing dashboard. For example, our MongoDB organization uses the Atlas auto-suggested tags “application” and “environment,” alongside a custom resource tag labeled "team." The following chart uses the tags data and shows the billing cost per team and per environment. A chart which depicts cost per team and environment using tags The subsequent chart presents the billing cost allocated per project and team, providing valuable insights into the primary cost drivers for each team's projects. A chart depicting cost allocated per project and team Users can also add a dashboard filter to the “tags” field, which will allow them to see the whole dashboard based on the selected tag values. In the next example, we have selected a specific “team” : “Charts” from the tags dashboard filter, so we can see all of the billing insights per team thanks to our custom tag. Billing insights filtered by specific "charts" team in an intuitive dashboard Linked organization’s data in the Atlas Charts billing dashboard For complex Atlas projects spanning multiple organizations, the Atlas Charts billing dashboard now seamlessly integrates billing data from all linked organizations. The most productive use case is to add a dashboard filter based on the "organizationId" to enable filtering data according to specific organizations for a more granular analysis of the spending. Dashboard filtered by the organizationID field to show insights for one organization Billing data from another organization Users can now ingest billing data from other organizations that are not directly linked, provided they possess authorization API keys, bringing the data you need to where you are. Provide the API key to ingest billing data from other organizations These new features in the Atlas Charts billing dashboard are designed to provide richer, more detailed insights into organization spend. Check out our documentation and our previous blog post to learn more about it. Hyperlinks and hidden columns for tables in Atlas Charts Of all the data visualization methods available in Atlas Charts, table charts rank as one of the most popular among our users. So it should come as no surprise that one of the most highly requested features from our customers is the ability to format columnar data as hyperlinks. We're excited to announce that this is now possible in Atlas Charts through the new hyperlink customization options available for table charts . With hyperlink customization, you can format columnar data as hyperlinks using any of the following URI protocols: http, https, mailto, or tel, and can be constructed statically or dynamically using encoded fields. Let’s assume we’ve created a table using the sample movies dataset in Atlas, with encodings like title, imdb.id, runtime, genre, poster_display—which is a calculated field —and more. Customization panel in Atlas Charts To turn movie titles into clickable links that direct users to their respective IMDB pages, navigate to the customization panel and click into the hyperlinking feature in the fields tab . We will format the title field as a hyperlink which links to the Internet Movie Database (IMDB) entry for that movie. IMDB URLs are formatted as follows, where id needs to be substituted with the value of the imdb.id field for each document. https://www.imdb.com/title/tt<id>/ Customize the “title” field in the table chart to link to IMDB using the “imdb.id” field in the URI input. Below, a preview displays the fully formatted URI with fields substituted for their values, helping to ensure it’s correct before we save it to be applied to the chart. Preview of URI in the hyperlinking panel Since we only need the imdb.id field to be encoded for the purpose of constructing the URI applied to the title field, we can hide the column from rendering using another new customization option. Select the imdb.id field in the customization panel, and toggle on the “Hide Column” option. Toggle "Hide Column" We also support using URI values directly from fields (provided they use one of the supported protocols). Let’s see this in action by creating a hyperlink to the movie poster. In the URI input, trigger the encoded field menu using the @ keyboard shortcut, and select the poster field. Similar to the previous example, a preview will be displayed. After saving and applying the hyperlink formatting, we can hide the rendering of the poster field as needed to keep the chart clean. Use the @ keyboard shortcut to trigger the encoded field menu All these options are accessible in the customization panel, making it straightforward to enhance table charts with interactive hyperlinks. For more detailed instructions, visit our documentation . As we conclude this roundup, we hope you’re as excited about these updates as we are. The Atlas Charts team is dedicated to continuously improving Atlas Charts to meet your needs and enhance your data visualization experience. Stay tuned for more updates, and happy charting! New to Atlas Charts? Get started today by logging into or signing up for MongoDB Atlas , deploying or selecting a cluster, and activating Charts for free.

September 5, 2024
Updates

MongoDB Atlas for Government Supports GCP Assured Workloads

We’re excited to announce that MongoDB Atlas for Government now supports the US regions of Google Cloud Assured Workloads, alongside existing support for AWS GovCloud and AWS US regions. This expansion offers greater flexibility and expanded support for public sector organizations and the independent software vendors (ISVs) that serve them as they modernize applications and migrate workloads to the cloud. Furthermore, MongoDB Atlas for Government is now available for purchase through the Google Cloud Marketplace . MongoDB Atlas for Government: Driving digital transformation in the public sector MongoDB Atlas for Government is an independent, dedicated version of MongoDB Atlas, designed specifically to meet the unique needs of the U.S. public sector and ISVs developing public sector solutions. This developer data platform provides the versatility and scalability required to modernize legacy applications and migrate workloads to the cloud, all within a secure, fully-managed, FedRAMP authorized environment. Refer to the FedRAMP Marketplace listing for additional information about Atlas for Government. By leveraging the full functionality of MongoDB's document database and application services, Atlas for Government supports a wide range of use cases within a unified developer data platform, including Internet of Things, AI/ML, analytics, mobile development, single view, transactional workloads, and more. Ensuring robust resilience and comprehensive disaster recovery, Atlas for Government maintains business continuity and minimizes downtime. With a ~99.995% uptime SLA , auto-scaling to handle data consumption fluctuations, and automated backup and recovery, organizations can have peace of mind that their data is always protected. Getting started with MongoDB Atlas for Government MongoDB Atlas for Government can be used to create database clusters deployed to a single region or spanning multiple US regions. Google Cloud Assured Workloads US regions are now supported in Atlas for Government projects tagged as “Gov regions only,” allowing for the use of both traditional Google Cloud regions as well as Assured Workloads US regions. To get started, create a project in Atlas for Government and make sure to select 'Designate as a Gov Cloud regions-only project' during the project creation process. After creating the project, you can set up a MongoDB cluster in the GCP regions. To do this, start the cluster creation process and select GCP as the Cloud Provider, as shown in the figure below. You'll then be prompted to choose one or more GCP regions for your cluster. You can find more details on supported cloud providers and regions in the Atlas for Government documentation . Creating multi-cloud clusters The introduction of support for Google Cloud Assured Workloads (US regions) makes MongoDB Atlas for Government the first fully managed multi-cloud data platform authorized at FedRAMP Moderate. This means that public sector organizations and ISVs can now deploy clusters across Google Cloud Assured Workloads US regions and AWS GovCloud regions, in addition to deploying database clusters across multiple US regions. Whether prioritizing performance, cost, or specific feature sets, Atlas for Government empowers teams to deploy application architectures that simultaneously take advantage of the best-of-class services from multiple cloud providers while meeting FedRAMP requirements. Multi-cloud support also provides additional resiliency and enhanced disaster recovery, safeguarding data and applications against potential service outages and failures with automatic failover. Ensuring robust data protection and seamless continuity MongoDB Atlas for Government now supports Google Cloud Assured Workloads US regions, expanding its multi-cloud capabilities alongside existing support for AWS GovCloud and AWS US regions. This enhancement provides public sector organizations and ISVs with the flexibility to modernize applications and migrate workloads in a secure, FedRAMP authorized environment. With robust resilience, comprehensive disaster recovery, and a ~99.995% uptime SLA, Atlas for Government ensures data protection and business continuity. By offering a unified developer data platform for a wide range of use cases, Atlas for Government empowers teams to leverage best-in-class cloud services while meeting stringent compliance requirements. How do I get started? Visit our product page to learn more about MongoDB Atlas for Government. Or, read the Atlas for Government documentation to learn how to get started today.

August 20, 2024
Updates

Atlas Search Nodes: Now with Multi-Region Availability

At MongoDB, we are continually refining our products to try and create the simplest and most seamless developer experience possible. This mantra has also been applicable to how we think about search, from the beginning with Atlas Text Search, to the announcement of the next paradigm with Atlas Vector Search. We have continued to expand this vision with the introduction of Search Nodes, initially launching on AWS , and then expanding to both Google Cloud and Microsoft Azure . Today we’re excited to take the next step in that journey with the announcement of multi-region availability on all three major cloud providers. Search Nodes: Isolation and scale As a quick refresher, Search Nodes provide dedicated infrastructure for Atlas Search and Vector Search workloads, enabling even greater control over search workloads. They also allow you to isolate and optimize compute resources to scale search and database needs independently, delivering better performance at scale and higher availability. Since our announcements, we’ve been thrilled with the excitement around Search Nodes and the desire for better control, flexibility, and availability for scaling both Atlas Search and Vector Search workloads. Incorporating Search Nodes into your deployment delivers workload isolation, and the ability to optimize resource usage. A visual of the evolution from the previous coupled architecture to dedicated nodes is shown below: Figure 1: Improved workload sizing alignment and enhanced scalability with Search Nodes Introducing Global Availability Another tenet of our builder's journey is making sure the flexibility, scalability, and performance with Search Nodes are available to everyone, regardless of the cloud you’re using or cloud region. Today, we’re excited to officially announce multi-region availability for Search Nodes to allow anyone to better optimize resource usage regardless of location. Now, with multi-region availability, you can take full advantage of global scalability by no longer being limited to one geographic area. Furthermore, you now have the peace of mind by having the redundancy needed to protect yourself in the case of any unforeseen outage event, whether due to technical issues or natural disasters that could cause data center downtime. Figure 2: Multi-region availability on all three major cloud providers Here is a quick video tutorial about how to enable Search Nodes, as well as take advantage of multi-region availability: Brief tutorial on how to enable multi-region Search Nodes With today’s announcements we’re excited to bring the power and control of dedicated Search Nodes to people using all clouds and regions across the globe. We’re excited to see the continued adoption and improved results from having greater ubiquity across your search implementations. As always, reach out to us with any feedback, as we’d love to hear what you think!

August 14, 2024
Updates

Introducing AI-Powered Natural Language Mode in Atlas Charts

At MongoDB, our mission is to empower developers to seamlessly and efficiently build modern applications. To that end, we’ve announced a number of tools and improvements to help developers build faster , from AI-powered SQL query conversion in Relational Migrator to the MongoDB Provider for Entity Core Framework. In the same spirit, today at MongoDB.local Sydney we’re excited to announce the general availability of Natural Language Mode in Atlas Charts . Not only does this release help developers move faster with AI, it also showcases the work of MongoDB’s nimble Sydney engineering team. Intelligent developer experiences: The next level of productivity Over the past year, we’ve introduced a range of intelligent developer experiences across our platform, all of which aim to simplify and accelerate development processes. Overall, our goal is to make tools faster, better, and more connected for our developers, and to enable developers to leverage the power of AI to enhance their experience. As IBM highlights , true developer productivity involves delivering high-quality outputs that satisfy customers but also avoid developer burnout. By reducing learning curves, saving time, and providing easily accessible insights, intelligent features enable developers to focus on their most important work: building modern applications that solve real-world problems through outputs that are truly worth developers’ time and effort. Here’s what we’ve introduced: MongoDB Compass —Developers can use natural language to compose everything from simple queries to sophisticated, multi-stage aggregations. MongoDB Relational Migrator —With natural language, developers can convert SQL queries to MongoDB Query API syntax, streamlining migration projects. MongoDB Documentation —An intelligent chatbot, built on top of MongoDB Atlas and Atlas Vector Search, enables lightning-fast information discovery and troubleshooting during software development. By integrating AI into our most important developer tools, we’re helping developers cut through the noise and focus on creating innovative solutions. Simplifying data visualization with Natural language Mode Visualizing data can be an incredibly effective way of gleaning insights from application data, but creating effective visualizations can require specialized knowledge and experience with business intelligence (BI) tools. Atlas Charts was built to level the playing field. Now, with Natural Language Mode, developers can create visualizations simply by asking questions in plain English. Natural Language Mode reduces technical barriers and makes data visualization accessible to anyone with data in MongoDB Atlas. This means faster chart creation at an advanced scale—all within the Atlas ecosystem. Since announcing its development in the fall of 2023, we’ve made significant enhancements to Natural Language Mode, including an expanded suite of chart types built for all kinds of data from patient records to financial trading flows. We’ve also improved performance to ensure faster and more accurate chart generation, including the ability to handle more sophisticated prompts, filtering, sorting, binning, and limiting. In the next few weeks, we will add more chart variation, as well as another upgrade to our model that will increase accuracy and responsiveness by up to 50%. Natural Language Mode in action Now let’s walk through a few examples of what using Natural Language Mode in an Atlas Charts looks like: Generating a chart using Natural Language Mode With a simple query like "Show me the sales performance by country and product for Q4 FY2023," developers can instantly generate a relevant chart. Customizing charts in Classic Mode After generating a chart, developers can pull it into Classic Mode to fine-tune and customize it to fit their dashboard needs. Scheduling Dashboards Developers can also schedule their dashboards to be shared via email, ensuring that key stakeholders receive up-to-date insights automatically. More data, more insights Customers are already excited about the possibilities of Atlas Charts and Natural Language Mode, from operational analytics to embedded analytics. For example, one of MongoDB’s early customers has been using Natural Language Mode to track server performance across various regions. Business analysts leverage the feature to gain insights into server performance and share these insights internally. They plan to embed these visualizations into their customer portal using the embedding SDK offered by Atlas Charts . Another customer said: "As a developer with no prior experience in analytics, I was excited to see Natural Language Mode generate a clear value proposition that showcased what the product is capable of. It makes me want to throw more data in the database to get more insights." So check out Natural Language Mode in Atlas Charts today, and experience firsthand how AI can simplify and accelerate your data visualization workflows. Try out Natural Language Mode in Atlas Charts to transform your data visualization process. New to Charts? Register for MongoDB Atlas , deploy a cluster, and activate Charts for free.

July 29, 2024
Updates

Elevate Your Python AI Projects with MongoDB and Haystack

MongoDB is excited to announce an integration with Haystack, enhancing MongoDB Atlas Vector Search for Python developers. This integration amplifies our commitment to providing developers with cutting-edge tools for building AI applications centered around semantic search and Large Language Models (LLMs). We’re excited to partner with MongoDB to help developers build top-tier LLM applications. The new Haystack and MongoDB Atlas integration lets developers seamlessly use MongoDB data in Haystack, a reliable framework for creating quality LLM pipelines for use cases like RAG, QA, and agentic pipelines. Whether you're an experienced developer or just starting, your gen AI projects can quickly progress from prototype to adoption, accelerating value for your business and end-users. Malte Pietsch, co-founder and CTO, deepset Simplifying AI app development with Haystack Haystack is an open-source Python framework that simplifies AI application development. It enables developers to start their projects quickly, experiment with different AI models, and to efficiently scale their applications. Indeed, Haystack is particularly effective for building applications requiring semantic understanding and natural language processing (NLP), such as chatbots and question-answering systems. Haystack’s core features include: Components: Haystack breaks down complex NLP tasks into manageable components, such as document retrieval or text summarization. With the new MongoDB-Haystack integration, MongoDB becomes the place where all your data lives, ready for Haystack to use. Pipelines: Haystack lets you link components together into pipelines for more complex tasks. With this integration, your MongoDB data flows through these pipelines. Agents: Haystack Agents use LLMs to resolve complex queries. They can decide which tools (or components) to use for a given question, leveraging MongoDB data to deliver smarter answers. Atlas Vector Search: Enhance AI development with Haystack At the heart of the new integration is MongoDB Atlas Vector Search , transforming how applications search and retrieve data. By leveraging vector embeddings, Atlas Vector Search goes beyond mere keyword matching: it interprets the intent behind queries, enabling applications to provide highly relevant, context-aware responses. This is a breakthrough for Python developers who aim to build applications that think and understand like humans. Building on this foundation, the Atlas Vector Search and Haystack integration gives Python developers a powerful toolkit for navigating the complexities of AI application development. MongoDB becomes a dynamic document store within Haystack's framework, optimizing data storage, processing, and retrieval. Additionally, the integration eases the use of advanced AI models from leading providers such as OpenAI and Cohere into your applications. Developers can thus create applications that do more than just answer queries—they grasp and act on the underlying intent, ensuring responses are both accurate and contextually relevant. What this means for Python developers For Python developers, this integration means: Faster development: Developers can focus on building and innovating rather than spending time configuring and managing infrastructure. MongoDB's integration with Haystack means you can get up and running quickly, leveraging the best of both technologies to accelerate your development cycles. Smarter applications: By utilizing Haystack's powerful Natural Language Processing tooling in combination with MongoDB Atlas Vector Search’s efficient data handling, developers can create applications that understand and process natural language more effectively. This results in applications that can provide more accurate and contextually relevant responses that resonate with user intent. Access to pre-trained AI models: With seamless integration of leading generative AI models from providers like OpenAI, Anthropic, Cohere, Hugging Face, and AWS Bedrock, Python developers can easily incorporate advanced AI functionalities into their projects. This means developers can quickly adopt state-of-the-art models without the need for extensive training or fine-tuning, saving time and resources. Flexible and scalable pipelines: Haystack's modular approach to building AI applications, through its use of components and pipelines, allows developers to create flexible and scalable solutions. With MongoDB data seamlessly flowing through these pipelines, you can easily adapt and expand your applications to meet growing demands and new challenges. Robust search capabilities: Atlas Vector Search transforms the way applications retrieve and interpret data, going beyond simple keyword searches. It enables applications to perform high-precision searches that return more relevant and semantically rich results. This advanced search capability is crucial for developing applications that require high levels of semantic understanding and accuracy. By integrating MongoDB with Haystack, Python developers are equipped with a powerful toolkit that not only simplifies the AI development process but also significantly enhances the intelligence and functionality of their applications. Whether you are building chatbots, search engines, or other AI-driven applications, this integration provides the tools you need to create innovative and impactful solutions. Get started now Start leveraging the MongoDB and Haystack integration for your AI development. Explore our tutorial , documentation , or check out our github repository to begin building smarter, more intuitive Python projects today!

July 8, 2024
Updates

Exact Nearest Neighbor Vector Search for Precise Retrieval

With its ability to efficiently handle high-dimensional, unstructured data, vector search delivers relevant results even when users don’t know what they’re looking for and uses machine learning models to find similar results across any data type. Rapidly emerging as a key technology for modern applications, vector search empowers developers to build next-generation search and generative AI applications faster and easier. MongoDB Atlas Vector Search goes beyond the approximate nearest neighbor (ANN) methods with the introduction of exact nearest neighbor (ENN) vector search . This innovative capability guarantees retrieval of the absolute closest vectors to your query, eliminating the accuracy limitations inherent in ANN. In sum, ENN vector search can help you unleash a new level of precision for your search and generative AI applications, improving benchmarking and moving to production faster. When exact nearest neighbor (ENN) vector search benefits developers While ANN shines in searching across large datasets, ENN vector search offers advantages in specific scenarios: Small-scale vector data: For datasets under 10,000 vectors, the linear time complexity of ENN vector search makes it a viable option, especially considering the added development complexity of tuning ANN parameters. Recall benchmarking of ANN queries: ANN queries are fast, particularly as the scale of your indexed vectors increases, but it may not be easy to know whether the retrieved documents by vector relevance correspond to the guaranteed closest vectors in your index. Using ENN can help provide that exact result set for comparison with your approximate result set, using jaccard similarity or other rank-aware recall metrics. This will allow you to have much greater confidence that your ANN queries are accurate since you can build quantitative benchmarks as your data evolves. Multi-tenant architectures: Imagine a scenario with millions of vectors categorized by tenants. You might search for the closest vectors within a specific tenant (identified by a tenant ID). In cases where the overall vector collection is large (in the millions) but the number of vectors per tenant is small (a few thousand), ANN's accuracy suffers when applying highly selective filters. ENN vector search thrives in this multi-tenant scenario, delivering precise results even with small result sets. Example use cases The small dataset size allows for exhaustive search within a reasonable timeframe, making exact nearest neighbor approach a viable option for finding the most similar data point, improving accuracy confidence in a number of use cases, such as: Multi-tenant data service: You might be building a business providing an agentic service that understands your customers’ data and takes actions on their behalf. When retrieving relevant proprietary data for that agent, it is critical that the right metadata filter be applied and that ENN be executed to retrieve the right sets of documents only corresponding to the appropriate data tenant IDs. Proof of concept development: For instance, a new recommendation engine might have a limited library compared to established ones. Here, ENN vector search can be used to recommend products to a small set of early adopters. Since the data is limited, an exhaustive search becomes practical, ensuring the user gets the most relevant recommendations from the available options. How ENN vector search works on MongoDB Atlas The ENN vector search feature in Atlas integrates seamlessly with the existing $vectorSearch stage within your Atlas aggregation pipelines. Its key characteristics include: Guaranteed accuracy: Unlike ANN, ENN always returns the closest vectors to your query, adhering to the specified limit. Eventual consistency: Similar to approximate vector search, ENN vector search follows an eventual consistency model. Simplified configuration: Unlike approximate vector search, where tuning numCandidates is crucial, ENN vector search only requires specifying the desired limit of returned vectors. Scalable recall evaluation: Atlas allows querying a large number of indexed vectors, facilitating the calculation of comprehensive recall sets for effective evaluation. Fast query execution: ENN vector search query execution can maintain sub-second latency for unfiltered queries up to 10,000 documents. It can also provide low-latency responses for highly selective filters that restrict a broad set of documents into 10,000 documents or less, ordered by vector relevance. Build more with ENN vector search ENN vector search can be a powerful tool when building a proof of concept for retrieval-augmented generation (RAG), semantic search, or recommendation systems powered by vector search. It simplifies the developer experience by minimizing overhead complexity and latency while giving you the flexibility to implement and benchmark precise retrieval. Explore more use cases and build applications faster, start experimenting with ENN vector search. Head over to our quick-start guide to get started with Atlas Vector Search today.

June 20, 2024
Updates

Announcing MongoDB Server 8.0 Platform Support Improvements

Last month at MongoDB.local NYC 2024, we announced the preview of MDB 8.0 , the next evolution of MongoDB’s modern database. With MongoDB 8.0, we’re focused on delivering the unparalleled performance, scalability, and operational resilience necessary to support the creation of next-generation applications. For that to be possible, users must be able to deploy MongoDB on industry-standard operating systems. As a result, we are updating our Server Platform Policy to ensure that customers have the best possible experience when using MongoDB. Starting in MongoDB 8.0, there will be two new changes: When a new major version of MongoDB is released, we will only release it operating system (OS) versions that are fully supported by the vendor for the duration of the MongoDB version’s life. In short, we will support an operating system if the operating system’s Extended Lifecycle Support (ELS) date is after the MongoDB Server’s End of Life (EOL) date. We will release new MongoDB Server versions (both major and minor) on the minimum supported minor version of the OS (defined by the OS vendor). Once an OS minor version is no longer supported by the vendor, we will update future MongoDB Server versions to the next supported OS minor version. As always, MongoDB reserves the right to discontinue support for platforms based on lack of user demand and/or technical difficulties (e.g., if a platform doesn’t support required libraries or compiler features). Ensuring best-in-class security MongoDB routinely updates our documentation to indicate which platforms a new version of the MongoDB Server will be available on with the general availability release of that new server version. To ensure that MongoDB customers can meet strong regulatory and security requirements, our software is developed, released, and distributed in accordance with industry security best practices. Given the mission-critical nature of MongoDB’s business—providing a highly secure, performant data platform to tens of thousands of customers in over 100 countries—we strive to provide strong and consistent security assurances across all of our products. In addition, MongoDB partners also need guarantees about the security development lifecycle of our products so they can provide the best experience to their customers. By ensuring that our software runs only on platform versions that are receiving security patches, we aim to limit the vulnerabilities that might be introduced by customers running EOL operating systems. The significance of this change With every major server release, MongoDB determines the supported builds for that general availability (GA) release according to the planned vendor platform’s end of life date —meaning the MongoDB major release will not support the operating system if the operating system’s extended lifecycle support ends before the MongoDB EOL date. This also applies to server container images delivered to our customers. Furthermore, to guarantee security assurances for operating systems that have a minimum minor version, we will only build new versions of MongoDB Server software on a vendor-supported major/minor version of the operating system. Concretely, we will build new versions of MongoDB on a minimum minor version until it hits a maintenance event (defined on a per-vendor basis), and at that point future MongoDB server builds will be updated to the new supported minor version. Separately, when a vendor publishes a new major version of an operating system after a given version of MongoDB reaches GA, we will evaluate whether the latest MongoDB release will run on this new OS version, or we will wait for the next major MongoDB release before documenting formal platform support on our website. Walkthrough: How it could work for you Consider the RHEL 9 Planning Guide below and the hypothetical release cadence of MongoDB version X.0. As long as version X.0 is released three years before the end of RHEL 9 support, which as noted by RHEL is 2032 , we will provide support on RHEL 9. This means that 2029 will be the last year that MongoDB releases a server version on RHEL 9. Next, consider that version X.0 will be released at the end of 2025. Following the Extended Update Support Plan, we will build version X.0 on RHEL 9.6 until the start of 2026 when RHEL 9.8 becomes available. And then for future versions, MDB X.Y will begin being built on RHEL 9.8 until we require the minimum version to be 9.10 in 2027. RHEL 9 planning guide Building the future Overall, these coming changes to the MongoDB Server Platform Policy underscore MongoDB’s commitment to helping developers innovate quickly and easily while providing an even more highly secure and performant data platform. Stay tuned for additional updates about MongoDB 8.0—which will provide optimal performance by dramatically increasing query performance, improving resilience during periods of heavy load, making scalability easier and more cost-effective, and making time series collections faster and more efficient. For more information about the Server Platform Policy updates, please refer to our documentation .

June 17, 2024
Updates

Leveraging Database Observability at MongoDB: Unlocking Performance Insights and Optimization Strategies

This post is the first in a three-part series on leveraging database observability. Observability has evolved into an essential information technology component, offering advanced insights into system performance beyond traditional monitoring. While monitoring aims to identify problems, observability helps understand and resolve them. Businesses prioritizing observability experience less downtime, leading to enhanced user experiences and improved ROI. Indeed, Splunk’s The State of Observability 2023 report quantified the financial impact of downtime—more than $150,000 per hour. Furthermore, observability leaders reported 33% fewer outages and achieved eight times better ROI than new adopters. Throughout this series, we'll define database observability at MongoDB, explore our suite of tools, delve into third-party integrations, and discuss everyday use cases. We will also establish a shared methodology and vocabulary for discussing observability at MongoDB and highlight the tools and features that have delivered value for our customers. Observability and MongoDB’s strategy Monitoring involves using tools to track real-time operations and alert teams to issues. As defined by Gartner, observability evolves monitoring into a process that provides deep insights into digital business applications, enhancing innovation and customer experience. The key difference is that monitoring detects the presence of issues, while observability gathers detailed information to understand and resolve them, which is crucial for modern IT infrastructure needs. Databases, in particular, play a critical role in this IT ecosystem, where performance and resilience directly impact business outcomes. This advancement is essential for DevOps, Database Administrators, and economic buyers responsible for these databases, as it enhances system reliability, encourages innovation, and supports financial objectives. Ultimately, observability provides comprehensive insights into system performance, health, and reliability by seamlessly integrating and contextualizing telemetry data. MongoDB leverages a unique observability strategy with out-of-the-box tools that automatically monitor and optimize customer databases. Explicitly designed for MongoDB environments, our system provides continuous feedback and answers critical questions—What is happening? Where is the issue? Why is it occurring? How do I fix it?—to enhance performance, increase productivity, and minimize downtime. Supporting MongoDB Atlas (our fully managed platform), Cloud Manager, and Ops Manager, as well as tailored monitoring solutions for the full range of developer data platform products (from enhanced search functionalities to app services and search nodes). Our approach meets the evolving needs of customer applications by: Leveraging MongoDB expertise: The MongoDB observability suite integrates efficiency and best practices from the beginning of the development cycle. As MongoDB platform experts, we use our deep knowledge to provide top-tier optimization insights. We apply our extensive understanding of our tools to ensure our customers benefit from a high-performing and resilient database. Offering streamlined metrics: We integrate our metrics seamlessly into our customers' central observability stacks and workflows. This creates a 'plug-and-play' experience that effortlessly aligns with popular monitoring systems like Datadog, New Relic, and Prometheus. Thus, it provides a unified view of customer application performance and deep insights into their database within a comprehensive dashboard. Breaking down MongoDB’s observability offerings Tailored database performance management MongoDB employs automated tools for comprehensive database performance management, focused on real-time optimization, strategic scaling, and best practices in schema design. Using out-of-the-box tools ensures high-performing, scalable, and cost-efficient database environments ideal for modern applications. Key features include: Performance Advisor : Provides index recommendations to improve read and write performance, significantly boosting overall efficiency. Schema Advisor : Supports flexible schema design and query execution analysis to enhance performance, scalability, and validation rules for schema compliance. Opt-in Autoscaling (only available in Atlas): Optimizes resource use, manages operational costs, ensures continuous availability, and adjusts resources based on demand, preventing downtimes. Performance Advisor in action Foundational monitoring for in-depth insights MongoDB provides foundational monitoring tools and out-of-the-box insights for optimal cluster health and performance after initial database setup. These tools both help reduce the burden of performing manual tasks while laying the groundwork for detailed and granular analysis of metrics and system performance aimed at enhancing query performance, reducing execution times, and lowering resource usage. These tools include: Monitoring Charts : These charts offer detailed metrics on hardware, database operations, replication status, sharded, and search/vector search with a fine-grained metric resolution to identify issues and track trends. Real-Time Performance Panel : This panel displays live network traffic, database operations, and hardware stats, helping to identify critical operations, evaluate query times, and monitor network load and throughput. Query Insights : The recently announced Namespace Insights provides users with collection-level latency statistics. At the same time, the enhanced cluster-centric Query Profiler gives an expanded view of query performance, significantly enhancing visibility and operational efficiency across the cluster. Learn more about both! Comprehensive alerting and seamless integrations MongoDB Atlas's sophisticated alerting system offers over 200 event types, providing teams with comprehensive control and visibility over their environments. Users can fine-tune their alerting strategy with customization options to fit their specific requirements. Additionally, MongoDB Atlas enhances team collaboration and ensures a unified view of application performance through seamless integrations with third-party tools like Slack, PagerDuty, and DataDog. These integrations simplify management tasks and leverage existing workflows for optimum operational effectiveness. What’s next? Enhanced database observability Observability is more than just a technical requirement—it's a strategic asset that enhances operational efficiency and economic viability. Through MongoDB's observability suite, organizations can optimize and scale system performance and fuel innovation. MongoDB is dedicated to continuously improving this suite to manage large-scale data better and meet demanding performance standards. Our commitment is reflected in our efforts to advance MongoDB's observability features, providing specific insights that deliver actionable intelligence tailored to our customers' needs. Look for the next post in this series, where we'll explore various tools and their integration, illustrated through common use cases. Sign up for MongoDB Atlas , our cloud database service, to see database observability in action. For more information, see Monitor Your Database Deployment .

May 30, 2024
Updates

A New Way to Query: Introducing the Atlas Search Playground

Today, MongoDB is thrilled to announce the launch of a brand new sandbox environment for Atlas Search. The Atlas Search Playground offers developers an unparalleled opportunity to quickly experiment, iterate, and collaborate on search indexes and queries, reducing the operational overhead throughout the entire software development lifecycle. What is the Atlas Search Playground? The Atlas Search Playground is a sandbox environment where you can explore the power and versatility of Atlas Search without needing to set up a full Atlas collection or waiting for your search index to build. It provides an instantaneous and frictionless way to experiment with creating indexes and crafting search queries on your own data—all in a single, user-friendly interface that requires no prior experience or account setup. Key Features: Instant access: No need to sign up or log in. Simply visit the Playground Environment page and start exploring immediately. Playground workspace: A dedicated workspace where you can add and modify data to work with, create, edit, and test search indexes, and test search queries in real-time. Pre-configured templates: Access a variety of sample templates to simulate real-world scenarios and test your search skills against diverse use cases. Shareable snapshots: Easily share your experiments and findings with colleagues or collaborators using unique URLs generated for each session. Just press Share to generate your unique Snapshot URL to share your pre-configured environment. A shareable snapshot from the Playground Ready to move into Atlas Search? Once you’re ready to move into Atlas, just click on the Go To Atlas button to sign up or log into your existing Atlas account. Once you are in Atlas, you can: Create a project, cluster, database, and collection to use with Atlas Search Tip! To use the documents from the Playground, select Add Documents and paste in the array of documents that you want to add. Create a search index Under the Data Services tab, click on the cluster name and navigate to the Atlas Search tab. Follow the setup instructions to create a search index. Tip! To use the search index from the Playground, select the JSON editor configuration method and paste in your index definition. Run a query Click on the name of your index, and select Search Tester from the navigation menu. Tip! To use the query from the Playground, click Edit $search query to open the query editor and paste in the query. If the query has multiple stages, click on visit the aggregation pipeline . Already an Atlas user? If you're already using Atlas Search, you can easily set up the Atlas Search Playground to match your existing configurations. All you have to do is copy and paste your documents, search index definitions, and queries into the corresponding editor panels. Ready, Set, Play Ready to embark on your search journey? Visit the Atlas Search Playground now and unleash the full potential of Atlas Search. Whether you're a seasoned pro or a curious novice, there's something for everyone to discover without the need for any setup. To learn more about the Atlas Search Playground, visit our documentation . And be sure to share what you think in our user feedback portal .

May 29, 2024
Updates

Stay Compliant with MongoDB’s Latest Certifications: ISO 9001, TISAX, HDS, and TX-RAMP

Ensuring compliance with regulations and security standards across industries and regions is a crucial aspect of MongoDB’s commitment to protecting customer data. That’s why we’re excited to announce that MongoDB Atlas has achieved certifications for ISO 9001, TISAX, HDS, and TX-RAMP, further solidifying our dedication to data security and regulatory compliance for both enterprise and public sector organizations. MongoDB Atlas achieved these certifications across AWS, Azure, and Google Cloud supported regions, thus providing customers the flexibility to adopt a multi-cloud model to support their workloads. In order to achieve each of these four new certifications, MongoDB Atlas underwent independent verification of its quality management, platform security, privacy, documentation, and organizational controls. These certifications—and the independent verifications required to achieve them—help ensure that Atlas meets organizations’ compliance, regulatory, and policy objectives, including the unique compliance needs of highly regulated industries. Read on to learn more about MongoDB’s new ISO 9001, TISAX, HDS, and TX-RAMP certifications, and how they can benefit organizations of all sizes. ISO 9001 Developed by the International Organization for Standardization (ISO), ISO 9001:2015 is an international standard for quality management systems (QMS) that is widely recognized across industries and organizations of all sizes. It provides a framework and guiding principles to systematically deliver products and services at consistently high quality to customers while ensuring compliance with regulations. MongoDB Atlas’s ISO 9001:2015 certification provides assurance to customers that we have implemented a robust QMS and are committed to consistently meeting their requirements and complying with all applicable regulations. It also emphasizes the importance of process control and continual improvement at MongoDB, which leads to greater consistency in product or service quality over time. Visit the Trust Center to learn more about MongoDB's ISO 9001 certification . TISAX The Trusted Information Security Assessment Exchange, or TISAX, is a certification program for information security in the automotive industry. Based on information security requirements created by the German Association of the Automotive Industry (VDA), TISAX helps European automotive companies streamline security evaluations by providing an industry-specific security framework for assessing information security for the wide landscape of suppliers, OEMs, and partners that contribute to the automotive supply chain. There are three assessment levels of TISAX certification. MongoDB has demonstrated compliance with the assessment level 3 (AL3) TISAX certification, which is the highest assessment level available and signifies a supplier's ability to handle and protect highly sensitive data, while also maintaining high availability. MongoDB Atlas's TISAX certification assists automotive industry customers in meeting their rigorous compliance needs. Additionally, it assures these customers that their data will be safeguarded to the highest standards within MongoDB Atlas, with robust measures in place for business continuity, disaster recovery, and risk mitigation. Visit the Trust Center to learn more about MongoDB’s TISAX certification . HDS France's HDS regulations and certification, known as Hébergeur de Données de Santé (Health Data Hosting), ensure organizations comply with basic requirements for hosting personal health data. According to the French Public Health Code, any organization hosting health data from healthcare activities in France must obtain HDS certification. By securing HDS certification, MongoDB Atlas helps those customers hosting health data in France to comply with HDS regulations and instills confidence that robust security controls and practices are in place to protect this highly sensitive data. Visit the Trust Center to learn more about MongoDB’s HDS certification . TX-RAMP The Texas Risk and Authorization Management Program, or TX-RAMP, is a certification program established in Texas that ensures the security of cloud computing services used by state governmental agencies. In order to demonstrate compliance with the security criteria required for TX-RAMP certification, MongoDB Atlas was assessed by the Texas Department of Information Resources (DIR). MongoDB Atlas for Government is already TX-RAMP certified by virtue of it being FedRAMP Moderate authorized. By securing TX-RAMP certification, MongoDB Atlas simplifies procurement for public sector customers in Texas seeking to adopt MongoDB Atlas on AWS, Azure, or Google Cloud. Visit the Trust Center to learn more about MongoDB’s TX-RAMP certification . MongoDB is dedicated to securing your data. We do so through state-of-the-art technical and organizational security controls, numerous regulatory and compliance resources, and a constantly growing collection of third-party attestations and certifications. Our new ISO 9001, TISAX, HDS, and TX-RAMP certifications help us ensure compliance with regulations and security standards across diverse industries and regions, both for enterprise and public sector organizations. To learn more about MongoDB’s technical and organizational security measures, visit the Technical and Organizational Security Measures page .

May 23, 2024
Updates

What’s New From MongoDB at Microsoft Build 2024

This week, thousands of engineers, database administrators, and developers are gathering in Seattle for Microsoft Build , Microsoft’s annual developer event. In addition to being on site for meetings and learning sessions, MongoDB is excited to showcase our latest innovations for building generative AI apps and more. First, we’re happy to announce that MongoDB now offers dedicated Search Nodes on Microsoft Azure . We offer both compute-optimized nodes for text or application search workloads, and memory-optimized nodes for vector, semantic search, or gen AI workloads. Search Nodes enhance performance and availability through workload isolation while reducing architectural complexity. The availability of Search Nodes on Azure is the latest example of how the partnership between MongoDB and Microsoft helps organizations of all sizes boost developer productivity and build modern applications faster. Keep reading for more on how MongoDB’s capabilities and integrations with Microsoft are helping customers create, innovate, and scale applications. Integrating services and technology to speed AI development The last year of AI innovation set a clear imperative for every organization—to meet customer expectations, they need to modernize their applications. However, many companies aren’t sure where to start with AI, so MongoDB recently announced the launch of the MongoDB AI Application Program (MAAP) alongside industry-leading AI partners. MAAP will provide customers with strategic advisory, professional services, and an integrated end-to-end technology stack from MongoDB and key partners like Microsoft. We’ve also made several technology announcements to enable building gen AI applications, including native support for MongoDB Atlas Vector Search in Microsoft Semantic Kernel , and a dedicated MongoDB Atlas integration for OpenAI’s ChatGPT Plugin . With the new integration, developers can seamlessly and securely enhance the power of large language models from OpenAI, Azure OpenAI, and Hugging Face with proprietary data in Atlas to build powerful retrieval-augmented generation applications using Python or C#. Developing faster with intelligent tools and frameworks In addition to helping developers build powerful gen AI applications through services like Atlas Vector Search, we’ve been working to enhance developer productivity, making it easier than ever to build applications with MongoDB. For example, we’ve introduced intelligent features to first-party tools like MongoDB Compass and Atlas Charts that support natural language. We also recently announced AI-powered SQL query conversions in Relational Migrator to help teams easily move their workloads to MongoDB. MongoDB is expanding the use of AI to enhance its integration with the world’s most popular integrated development environment, Visual Studio Code. We’re excited to announce the MongoDB Participant for the Github CoPilot chat experience, designed to empower developers to generate queries from natural language, understand collection schemas, and instantly access MongoDB documentation. Sign up for the private preview here . MongoDB also supports a variety of programming frameworks to improve productivity and accelerate application development—while ensuring data consistency and quality. Now generally available, the MongoDB Provider for Entity Framework Core (EF Core), encourages C# developers to build their next project on MongoDB. This new offering helps C# developers—39% of whom use EF Core—unlock the full power of MongoDB using the EF Core APIs and design patterns they already know and love. Streamlining comprehensive data analysis For years, MongoDB and Microsoft have facilitated the large-scale analysis of application-generated data to aid business development. Tools like Microsoft Power BI provide a comprehensive view of business intelligence data for developers and analysts with complex data estates using relational databases alongside MongoDB. MongoDB’s Power BI Connector for Atlas —previously supporting Import Mode—now also supports DirectQuery, which we announced a few weeks ago at MongoDB.local NYC . This allows for real-time querying of MongoDB data and is ideal for large datasets. To further enable customers working in the Microsoft ecosystem, we’ve recently made Atlas Data Federation and Atlas Online Archive generally available on Azure . These services enable users to query, transform, and create views across multiple Atlas databases and Azure cloud storage solutions, like Blob Storage and Data Lake Storage Gen2, simplifying data management and archiving within the Azure ecosystem. Building the future together MongoDB's partnership with Microsoft has made developing modern applications faster and easier. We're thrilled to announce these new capabilities at Microsoft Build 2024 , and look forward to helping our joint customers build amazing things together this year. “MongoDB’s relationship with Microsoft has never been better, and with these latest integrations, our momentum continues to grow,” said Alan Chhabra, MongoDB’s EVP of Worldwide Partners. “Already, many of the largest enterprises and most advanced startups in the world run MongoDB Atlas on Microsoft Azure. These latest innovations will empower even more of our customers to take full advantage of their data to build truly transformational generative AI-powered applications.” MongoDB’s partnership with Microsoft sets projects up for success today and tomorrow by delivering robust, integrated solutions that cater to developers' needs. MongoDB and Microsoft are pushing the boundaries for innovation and service for the developer community. To learn more about our recent announcements and for the latest product updates, visit our What’s New page. And head to our campaign page to learn more about how to build smarter and develop faster with MongoDB Atlas on Microsoft Azure.

May 21, 2024
Updates

Announcing DirectQuery Support for the MongoDB Atlas Connector for Power BI

Last year, we introduced the MongoDB Atlas Power BI Connector , a certified solution that has transformed how businesses gain real-time insights from their MongoDB Atlas data using their familiar Microsoft Power BI interface. Today, we’re excited to announce a significant enhancement to this integration: the introduction of DirectQuery support. DirectQuery mode provides a direct connection to your MongoDB Atlas database, allowing Power BI to query data in real-time. This means that your Power BI visualizations and reports will always reflect the latest data without importing and storing data within Power BI. This is especially beneficial for analyzing large datasets where up-to-date information is crucial, ensuring decisions are made efficiently without losing performance due to repetitive data imports and storage complexities. How DirectQuery in MongoDB Atlas Power BI Connector works: The Power BI Connector is supported through MongoDB’s Atlas SQL Interface , which is easily enabled from the Atlas console. Atlas SQL, powered by Atlas Data Federation , allows you to integrate data across sources and apply transformations directly, enhancing your analytics. Once enabled, you’ll receive a SQL Endpoint or URL to input into your MongoDB Atlas SQL Connection Dialog within Power BI Desktop. Here, you can choose between two connectivity modes: Import or DirectQuery. Once connected through DirectQuery, Query folding takes place with Power Query , which is how data retrieval and transformation of source data is optimized. You can also achieve data transformation using a SQL Statement, either with the SQL Statement option in the Atlas SQL Interface or within the M Code script accessed via the Power Query Advanced Editor. After your data is transformed and ready for analysis, start building reports with your Atlas data within the Power BI Desktop! Then, simply save, publish, and distribute within the Power BI online app, which is now part of the Microsoft Fabric platform. Watch our comprehensive tutorial below covering how to connect your Atlas data to Power BI , control SQL schemas in Atlas, and use DirectQuery to gain real-time access to your data for business insights. Power BI Connector for MongoDB Atlas is a Microsoft-certified solution. It not only supports the advanced capabilities of DirectQuery but also continues to offer Import Mode for scenarios where data volume is manageable and detailed data modeling is preferred. Whether you’re analyzing real-time data streams or creating comprehensive reports, the Atlas Power BI Connector adapts to your needs, ensuring your business leverages the full power of MongoDB Atlas. DirectQuery Support is available now and can be accessed by updating your existing MongoDB Atlas Power BI Connector or downloading it here . Start transforming your data analysis and making more informed decisions with real-time Atlas data. Log in and activate the Atlas SQL Interface to try out the Atlas Power BI Connector ! If you are new to Atlas or Power BI, get started for free today on Azure Marketplace or Power BI Desktop .

May 13, 2024
Updates

Ready to get Started with MongoDB Atlas?

Start Free