对 Atlas Search 结果进行排序
在此页面上
Overview
Atlas Search 允许您在 Atlas Search 索引中定义的字段中,按升序或降序对结果进行排序。您可以使用 sort
选项按以下字段类型进行排序:
boolean
date
number
(整数、浮点数和 double 值)objectId
uuid
string
(索引为 词元类型)
您还可以按结果中文档的分数和 空值进行排序。
sort
选项兼容性
Atlas支持所有主要和次要MongoDB 5.0 及更高版本的非分片排序查询。分片排序查询可在 6.0 的所有主要版本以及 7.0 及更高版本的所有主要和次要版本上使用。
sort
选项限制
不能对 embeddedDocuments 类型的字段进行排序。
不能将
sort
选项与已弃用的 knnBeta 操作符一起使用。
使用
要对 Atlas Search 结果进行排序,必须执行以下步骤:
行为
按布尔值、日期、数值、UUID、ObjectId 或字符串字段排序
sort
选项采用一个文档,该文档指定要作为排序依据的字段以及相应的排序顺序。对于支持的数据类型,Atlas Search 遵循 MongoDB 比较顺序。它像 BinData
一样处理 UUID 值。要了解更多信息,请参阅不存在的字段。
您可以指定以下排序顺序来对结果进行排序:
| 按升序排序。 当您按升序排序时,Atlas Search 将先返回值缺失的文档,然后再返回包含值的文档。 |
| 按降序排序。 |
按分数和唯一字段排序
您还可以按分数升序或降序排序。 sort
选项采用指定$meta表达式的文档,该表达式需要searchScore
值。
例子
假设您的应用程序支持用户跳到搜索结果的最后一页。以下示例按分数升序对结果进行排序,以便分数最低的文档显示在结果的顶部:
sort: {score: {$meta: "searchScore", order: 1}}
当结果中的多个文档具有相同分数时,您还可以使用 sort
确保结果具有确定的顺序。例如,如果您按唯一字段(例如名为 lastUpdated
的日期字段,如下例所示)对结果进行排序,Atlas Search 将按确定的顺序返回分数相同的结果:
例子
sort: {score: {$meta: "searchScore"}, lastUpdated: 1}
但是,如果不指定唯一字段对结果进行排序,Atlas Search 返回的结果将按分数降序排序。Atlas Search 以任意顺序返回具有相同分数或值的结果。以下示例不按唯一字段对结果进行排序。
例子
sort: {score: {$meta: "searchScore"}}
要了解详情,请参阅对结果中的文档进行评分。
数组排序
Atlas Search 将数组展平以进行排序。
例子
请考虑以下数组:
[4, [1, [8,5], 9], 2]
Atlas Search 将前面的数组展平,类似于以下内容:
4, 1, 8, 5, 9, 2
对于升序排序,Atlas Search 使用 1
将数组与其他值进行比较。对于降序排序,Atlas Search 使用 9
将数组与其他值进行比较。
与数组内的元素进行比较时:
对于升序排序,Atlas Search 比较数组的最小元素,或执行小于 (
<
) 比较。例子
如果按编号升序排序,Atlas Search 会按以下顺序排列结果:
-20 [-3, 12] // <- -3 comes before 5. 5 [6, 18] // <- 6 comes after 5. 13 14 对于降序排序,Atlas Search 比较数组的最大元素,或执行大于 (
>
) 比较。例子
如果按数字降序排序,Atlas Search 会按以下顺序对结果进行排序:
[6, 18] // <- 18 comes before 14. 14 13 [-3, 12] // <- 12 comes after 13. 5 -20
对多种类型的数组进行排序
对包含多个 BSON 类型值的大量字段进行排序时, Atlas Search会根据MongoDB 的默认比较和排序默认,从大量中选择一个有代表性的元素进行比较。
对于升序排序, Atlas Search使用具有最低BSON类型的元素。
对于降序排序, Atlas Search使用具有最高BSON类型的元素。
如果大量中有多个相同BSON类型的值,则应用所选类型的标准排序行为。
例子
请考虑以下数组:
[ 'foo', null, 15, true, false ]
对于降序排序, Atlas Search使用
true
,因为它是大量中最高的BSON类型,并且Atlas Search将true
值排在false
值之上。
但是,如果您在noData: highest
sort
语法中设立 , Atlas Search会将 null 值和缺失值视为最高BSON类型。对于示例大量,以下行为适用:
对于升序排序, Atlas Search使用
15
,因为它现在是大量中最低的BSON类型。对于降序排序, Atlas Search使用
null
,因为它现在是大量中最高的BSON类型。
按 Null 和缺失值排序
Atlas Search将 null 值视为等于缺失值和空值,并且在排序时,具有这些值的文档的顺序是不确定的。
默认情况下, Atlas Search遵循MongoDB比较和排序顺序,并将空值视为低于所有其他支持的BSON 类型。因此,升序排序时,空值出现在结果的顶部;降序排序时,空值出现在结果的底部。
要配置 null 值在结果中出现的位置,请在noData
sort
语法中指定 字段。noData
字段采用以下值:
lowest
(默认):在排序期间将空值设置为最低的BSON类型。升序排序时,将空值排序在结果的顶部;降序排序时,将空值排序在结果的底部。highest
:在排序期间将 null 值设置为最高BSON类型。在升序排序期间,将空值排序在结果的底部;在降序排序时,将空值排序在顶部。
对嵌入式文档数组字段进行排序
要按嵌入式文档字段对父文档进行排序,必须执行以下操作:
Atlas Search 仅对父文档进行排序。 它不会对文档数组中的子字段进行排序。 有关示例,请参阅排序示例。
Considerations
一致性(Consistency)
Atlas Search 索引最终是一致的,结果中返回的值可能与排序时使用的值不同。
性能
此功能可优化使用 $search
和 $limit
作为后续阶段的查询。如果 Atlas Search 需要对集合中的所有文档进行排序,响应可能会很慢。
评分
Atlas Search 返回结果中所有文档的分数。但是,您可能会在得分较低的文档之后看到得分较高的文档,因为结果中文档的顺序是基于排序条件,除非您明确要求按分数排序。
语法
sort
通过以下语法实现:
1 { 2 "$search": { 3 "index": "<index name>", // optional, defaults to "default" 4 "<operator>": { // such as "text", "compound", or "phrase" 5 <operator-specification> 6 }, 7 "sort": { 8 score: {$meta: "searchScore"}, // optional field 9 "<field-to-sort>": <sort-order>, // 1 or -1, or a document 10 ... 11 } 12 } 13 }
Parameter | 说明 | |||||
---|---|---|---|---|---|---|
| 可选。 确定是否按搜索分数排序。 要学习;了解更多信息,请参阅按分数和唯一字段排序。 | |||||
| 必需。 作为排序依据的字段的名称。 | |||||
| 必需。 确定排序顺序。 使用 如果要指定 noData字段,请使用具有以下事务语法的文档:
|
示例
以下示例使用 sample_mflix.movies
、sample_airbnb.listingsAndReview
或名为 users
的自定义集合。
➤ 使用选择语言下拉菜单设置本节中示例的语言。
索引定义
本页中的示例查询使用 sample_mflix.movies
、 sample_airbnb.listingsAndReview
或自定义集合。如果您在这些集合上创建以下索引,则可以针对索引字段运行示例查询。
movies
集合的索引定义将指定以下内容:
索引
awards.wins
字段为:number
用于排序和查询的类型,包括运行分面(Facet)查询
索引
released
字段为:date
用于排序和查询的类型,包括运行分面(Facet)查询
索引
title
字段为:token
排序类型string
用于查询的类型
1 { 2 "mappings": { 3 "dynamic": true, 4 "fields": { 5 "awards": { 6 "dynamic": false, 7 "fields": { 8 "wins": [ 9 { 10 "type": "number" 11 } 12 ] 13 }, 14 "type": "document" 15 }, 16 "released": [ 17 { 18 "type": "date" 19 } 20 ], 21 "title": [{ 22 "type": "token" 23 }, { 24 "type": "string" 25 }] 26 } 27 } 28 }
对于前面的索引定义,Atlas Search 创建一个名为 default
的索引,并在指定字段上使用静态映射。
针对 sample_airbnb.listingsAndReviews
集合的示例查询使用了以下索引。索引定义指定了集合中字段的动态映射:
{ "mappings": { "dynamic": true } }
users
集合包含以下文档:
db.users.insertMany([ { "_id": 0, "a": UUID("1a324de2-e34b-c87e-f2a1-42ce37ad74ed"), "b": "hello", "c": ObjectId("507f1f77bcf86cd799439011") }, { "_id": 1, "a": UUID("3b241101-e2bb-4255-8caf-4136c566a962"), "b": "hello", "c": true }, { "_id": 2, "a": UUID("dee11d4e-63c6-4d90-983c-5c9f1e79e96c"), "b": "hello", "c": "foo" }, { "_id": 3, "b": "hello", "c": UUID("3be11d4e-62cb-4e95-9a3c-5c9f1e56c732") }, { "_id": 4, "a": UUID("d3c12e1c-c36e-25ed-7c3e-1e7f1e53c752"), "b": "hello", "c": null }, { "_id": 5, "a": UUID("d73f181e-cdda-42b4-b844-4d6e172e9bc8"), "b": "hello", "c": [] } { "_id": 6, "a": UUID("7eeddf21-b313-4a5c-81c2-c68915daa618"), "b": "hello", } ])
users
集合的索引定义将指定以下内容:
动态索引除名为
c
的字段之外的所有字段。将名为
c
的字段静态索引为以下类型以进行排序:token
uuid
objectId
boolean
1 { 2 "mappings": { 3 "dynamic": true, 4 "fields": { 5 "c": [ 6 { "type": "token" }, 7 { "type": "uuid" }, 8 { "type": "objectId" }, 9 { "type": "boolean" }, 10 { "type": "number" } 11 ] 12 } 13 } 14 }
对于前面的集合,Atlas Search 会创建一个名为 default
的索引,并在指定字段上使用指定的映射。
日期搜索和排序
以下查询显示了如何运行复合查询,并按日期字段对结果进行排序。它使用以下操作符:
通配符操作符来搜索以
Summer
开头的电影标题。接近操作符,用于搜索 2014 年 4 月 18 日之前或之后五个月内发行的电影。
注意
对日期字段使用
pivot
时,其计量单位为毫秒。Atlas Search 会根据该日期字段与指定日期的接近程度为每个文档计算一个分数。要了解详情,请参阅 near。
查询使用了下列管道阶段:
$search
阶段搜索title
和released
字段,然后按released
字段降序对结果进行排序。$limit
阶段将输出限制为5
个结果。$project
阶段到:排除除
title
和released
之外的所有字段。添加名为
score
的字段。
运行此查询。
将以下查询复制并粘贴到 Query Editor 中,然后单击 Query Editor 中的 Search 按钮。
[ { $search: { "compound": { "filter": [{ "wildcard": { "query": "Summer*", "path": "title" } }], "must": [{ "near": { "pivot": 13149000000, "path": "released", "origin": ISODate("2014-04-18T00:00:00.000+00:00") } }] }, "sort": { "released": -1, "title": 1 } } } ]
SCORE: 0.348105788230896 _id: "573a13f0f29313caabddaf7a" countries: Array runtime: 104 cast: Array ... title: "Summer Nights" ... released: 2015-01-28T00:00:00.000+00:00 ... SCORE: 0.5917375683784485 _id: "573a13e6f29313caabdc673b" plot: "25-year-old Iiris and Karoliina have been best friends since childhood…" genres: Array runtime: 90 ... title: "Summertime" ... released: 2014-08-01T00:00:00.000+00:00 ... SCORE: 0.9934720396995544 _id: "573a13eff29313caabdd760c" plot: "Erik Sparrow is one of the lucky ones. He's got a good job. He's in a …" genres: Array runtime: 86 ... title: "Summer of Blood" ... released: 2014-04-17T00:00:00.000+00:00 ... SCORE: 0.15982933342456818 _id: "573a13cff29313caabd8ab74" plot: "The story of an adult and a teenage couple during a brief summer holid…" genres: Array countries: Array ... title: "Summer Games" ... released: 2012-02-08T00:00:00.000+00:00 ... SCORE: 0.13038821518421173 _id: "573a13cef29313caabd87f4e" plot: "Summer of Goliath is a documentary/fiction hybrid that narrates variou…" genres: Array runtime: 78 ... title: "Summer of Goliath" ... released: 2011-07-08T00:00:00.000+00:00 ... SCORE: 0.08124520629644394 _id: "573a13c7f29313caabd7608d" plot: "A student tries to fix a problem he accidentally caused in OZ, a digit…" genres: Array runtime: 114 ... title: "Summer Wars" ... released: 2009-08-01T00:00:00.000+00:00 SCORE: 0.0711759403347969 _id: "573a13bbf29313caabd54ee6" plot: "The life of a public school epitomized by disobedient student Jonah Ta…" genres: Array runtime: 30 ... title: "Summer Heights High" ... released: 2008-11-09T00:00:00.000+00:00 ... SCORE: 0.06951779872179031 _id: "573a13bff29313caabd5f935" plot: "On his spring break at the seaside, with his wife and his four year ol…" genres: Array runtime: 102 ... title: "Summer Holiday" ... released: 2008-09-19T00:00:00.000+00:00 ... SCORE: 0.05834990739822388 _id: "573a13c0f29313caabd628ac" plot: "Kochi Uehara is a fourth grade student living in the suburb of Tokyo. …" genres: Array runtime: 138 ... title: "Summer Days with Coo" ... released: 2007-07-28T00:00:00.000+00:00 ... SCORE: 0.056174591183662415 _id: "573a13b8f29313caabd4c1d0" fullplot: "Country girl Yu Hong leaves her village, her family and her lover to s…" genres: Array runtime: 158 ... title: "Summer Palace" ... released: 2007-04-18T00:00:00.000+00:00 ...
1 db.movies.aggregate([ 2 { 3 $search: { 4 "index": "default", 5 "compound": { 6 "filter": [{ 7 "wildcard": { 8 "query": "Summer*", 9 "path": "title" 10 } 11 }], 12 "must": [{ 13 "near": { 14 "pivot": 13149000000, 15 "path": "released", 16 "origin": ISODate("2014-04-18T00:00:00.000+00:00") 17 } 18 }] 19 }, 20 "sort": { 21 "released": -1 22 } 23 } 24 }, 25 { 26 $limit: 5 27 }, 28 { 29 $project: { 30 "_id": 0, 31 "title": 1, 32 "released": 1, 33 "score": { 34 "$meta": "searchScore" 35 } 36 } 37 }])
[ { title: 'Summer Nights', released: ISODate("2015-01-28T00:00:00.000Z"), score: 0.348105788230896 }, { title: 'Summertime', released: ISODate("2014-08-01T00:00:00.000Z"), score: 0.5917375683784485 }, { title: 'Summer of Blood', released: ISODate("2014-04-17T00:00:00.000Z"), score: 0.9934720396995544 }, { title: 'Summer Games', released: ISODate("2012-02-08T00:00:00.000Z"), score: 0.15982933342456818 }, { title: 'Summer of Goliath', released: ISODate("2011-07-08T00:00:00.000Z"), score: 0.13038821518421173 } ]
在MongoDB Compass中,从下拉列表中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。单击 Add Stage 以添加其他阶段。
管道阶段 | 查询 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
| |||||||||||||||||||||
|
| |||||||||||||||||||||
|
|
如果启用了 Auto Preview,MongoDB Compass 将在 $limit
管道阶段旁边显示以下文档:
{ title: 'Summer Nights', released: 2015-01-28T00:00:00.000+00:00, score: 0.348105788230896 }, { title: 'Summertime', released: 2014-08-01T00:00:00.000+00:00, score: 0.5917375683784485 }, { title: 'Summer of Blood', released: 2014-04-17T00:00:00.000+00:00, score: 0.9934720396995544 }, { title: 'Summer Games', released: 2012-02-08T00:00:00.000+00:00, score: 0.15982933342456818 }, { title: 'Summer of Goliath', released: 2011-07-08T00:00:00.000+00:00, score: 0.13038821518421173 }
定义查询。
将
Program.cs
文件的内容替换为以下代码。1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class SortByStrings 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 23 // declare data for compound query 24 var originDate = new DateTime(2014, 04, 18, 0, 0, 0, DateTimeKind.Utc); 25 26 // define search options 27 var searchOptions = new SearchOptions<MovieDocument>() 28 { 29 Sort = Builders<MovieDocument>.Sort.Descending(movie => movie.Released), 30 IndexName = "default" 31 }; 32 33 // define and run pipeline 34 var results = moviesCollection.Aggregate() 35 .Search(Builders<MovieDocument>.Search.Compound() 36 .Filter(Builders<MovieDocument>.Search.Wildcard(movie => movie.Title, "Summer*")) 37 .Must(Builders<MovieDocument>.Search.Near(movie => movie.Released, originDate, 13149000000)), searchOptions) 38 .Project<MovieDocument>(Builders<MovieDocument>.Projection 39 .Include(movie => movie.Released) 40 .Include(movie => movie.Title) 41 .Exclude(movie => movie.Id) 42 .MetaSearchScore(movie => movie.Score)) 43 .Limit(5) 44 .ToList(); 45 46 // print results 47 foreach (var movie in results) 48 { 49 Console.WriteLine(movie.ToJson()); 50 } 51 } 52 } 53 54 [ ]55 public class MovieDocument 56 { 57 [ ]58 public ObjectId Id { get; set; } 59 public DateTime Released { get; set; } 60 public string Title { get; set; } 61 public double Score { get; set; } 62 } 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
dotnet run Program.cs
{ "released" : ISODate("2015-01-28T00:00:00Z"), "title" : "Summer Nights", "score" : 0.348105788230896 } { "released" : ISODate("2014-08-01T00:00:00Z"), "title" : "Summertime", "score" : 0.59173756837844849 } { "released" : ISODate("2014-04-17T00:00:00Z"), "title" : "Summer of Blood", "score" : 0.99347203969955444 } { "released" : ISODate("2014-01-17T00:00:00Z"), "title" : "Summer in February", "score" : 0.62580311298370361 } { "released" : ISODate("2012-02-08T00:00:00Z"), "title" : "Summer Games", "score" : 0.15982933342456818 }
定义查询。
创建一个名为
sort-by-date.go
的新文件并粘贴以下代码:1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/v2/bson" 9 "go.mongodb.org/mongo-driver/v2/mongo" 10 "go.mongodb.org/mongo-driver/v2/mongo/options" 11 ) 12 13 func main() { 14 // connect to your Atlas cluster 15 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string")) 16 if err != nil { 17 panic(err) 18 } 19 defer client.Disconnect(context.TODO()) 20 21 // set namespace 22 collection := client.Database("sample_mflix").Collection("movies") 23 24 // define pipeline stages 25 searchStage := bson.D{{Key: "$search", Value: bson.M{ 26 "index": "default", 27 "compound": bson.M{ 28 "filter": bson.A{ 29 bson.M{ 30 "wildcard": bson.D{ 31 {Key: "path", Value: "title"}, 32 {Key: "query", Value: "Summer*"}, 33 }}, 34 }, 35 "must": bson.A{ 36 bson.M{ 37 "near": bson.M{ 38 "path": "released", 39 "origin": time.Date(2014, time.April, 18, 0, 0, 0, 0, time.UTC), 40 "pivot": 13149000000}}, 41 }, 42 }, 43 "sort": bson.D{{Key: "released", Value: -1}}, 44 }}} 45 46 limitStage := bson.D{{Key: "$limit", Value: 5}} 47 projectStage := bson.D{{Key: "$project", Value: bson.D{{Key: "_id", Value: 0}, {Key: "title", Value: 1}, {Key: "released", Value: 1}, {Key: "score", Value: bson.D{{Key: "$meta", Value: "searchScore"}}}}}} 48 49 // run pipeline 50 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}) 51 if err != nil { 52 panic(err) 53 } 54 55 // print results 56 var results []bson.D 57 if err = cursor.All(context.TODO(), &results); err != nil { 58 panic(err) 59 } 60 for _, result := range results { 61 fmt.Println(result) 62 } 63 } 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
go run sort-by-date.go
[{title Summer Nights} {released 1422403200000} {score 0.348105788230896}] [{title Summertime} {released 1406851200000} {score 0.5917375683784485}] [{title Summer of Blood} {released 1397692800000} {score 0.9934720396995544}] [{title Summer Games} {released 1328659200000} {score 0.15982933342456818}] [{title Summer of Goliath} {released 1310083200000} {score 0.13038821518421173}]
定义查询。
创建一个名为
SortByDate.java
的新文件并粘贴以下代码:1 import java.util.Arrays; 2 import java.util.List; 3 4 import static com.mongodb.client.model.Aggregates.limit; 5 import static com.mongodb.client.model.Aggregates.project; 6 import static com.mongodb.client.model.Projections.*; 7 import com.mongodb.client.MongoClient; 8 import com.mongodb.client.MongoClients; 9 import com.mongodb.client.MongoCollection; 10 import com.mongodb.client.MongoDatabase; 11 import org.bson.Document; 12 13 import java.time.Instant; 14 import java.util.Date; 15 16 public class SortByDate { 17 public static void main( String[] args ) { 18 // define query 19 Document agg = 20 new Document("$search", 21 new Document("index", "default") 22 .append("compound", 23 new Document("filter", Arrays.asList(new Document("wildcard", 24 new Document("query", "Summer*") 25 .append("path", "title")))) 26 .append("must", Arrays.asList(new Document("near", 27 new Document("pivot", 13149000000L) 28 .append("path", "released") 29 .append("origin", Date.from(Instant.parse("2014-04-18T00:00:00.000+00:00"))))))) 30 .append("sort", new Document("released", -1))); 31 32 // specify connection 33 String uri = "<connection-string>"; 34 35 // establish connection and set namespace 36 try (MongoClient mongoClient = MongoClients.create(uri)) { 37 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 38 MongoCollection<Document> collection = database.getCollection("movies"); 39 // run query and print results 40 collection.aggregate(Arrays.asList(agg, 41 limit(5), 42 project(fields(exclude("_id"), include("title"), include("released"), computed("score", new Document("$meta", "searchScore")))))) 43 .forEach(doc -> System.out.println(doc.toJson())); 44 } 45 } 46 } 注意
要在 Maven 环境中运行示例代码,请将以下代码添加到文件中的 import 语句上方。
package com.mongodb.drivers; 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
javac SortByDate.java java SortByDate
{"title": "Summer Nights", "released": {"$date": "2015-01-28T00:00:00Z"}, "score": 0.348105788230896} {"title": "Summertime", "released": {"$date": "2014-08-01T00:00:00Z"}, "score": 0.5917375683784485} {"title": "Summer of Blood", "released": {"$date": "2014-04-17T00:00:00Z"}, "score": 0.9934720396995544} {"title": "Summer Games", "released": {"$date": "2012-02-08T00:00:00Z"}, "score": 0.15982933342456818} {"title": "Summer of Goliath", "released": {"$date": "2011-07-08T00:00:00Z"}, "score": 0.13038821518421173}
定义查询。
创建一个名为
SortByDate.kt
的新文件并粘贴以下代码:1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 import java.time.Instant 8 import java.util.* 9 10 fun main() { 11 // establish connection and set namespace 12 val uri = "<connection-string>" 13 val mongoClient = MongoClient.create(uri) 14 val database = mongoClient.getDatabase("sample_mflix") 15 val collection = database.getCollection<Document>("movies") 16 17 runBlocking { 18 // define query 19 val agg = Document( 20 "\$search", 21 Document("index", "default") 22 .append( 23 "compound", 24 Document( 25 "filter", listOf( 26 Document( 27 "wildcard", 28 Document("query", "Summer*") 29 .append("path", "title") 30 ) 31 ) 32 ) 33 .append( 34 "must", listOf( 35 Document( 36 "near", 37 Document("pivot", 13149000000L) 38 .append("path", "released") 39 .append("origin", Date.from(Instant.parse("2014-04-18T00:00:00.000+00:00"))) 40 ) 41 ) 42 ) 43 ) 44 .append("sort", Document("released", -1)) 45 ) 46 47 // run query and print results 48 val resultsFlow = collection.aggregate<Document>( 49 listOf( 50 agg, 51 limit(5), 52 project(fields( 53 excludeId(), 54 include("title", "released"), 55 computed("score", Document("\$meta", "searchScore")) 56 )) 57 ) 58 ) 59 resultsFlow.collect { println(it) } 60 } 61 mongoClient.close() 62 } 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
kotlin SortByDate.kt
Document{{title=Summer Nights, released=Tue Jan 27 19:00:00 EST 2015, score=0.348105788230896}} Document{{title=Summertime, released=Thu Jul 31 20:00:00 EDT 2014, score=0.5917375683784485}} Document{{title=Summer of Blood, released=Wed Apr 16 20:00:00 EDT 2014, score=0.9934720396995544}} Document{{title=Summer Games, released=Tue Feb 07 19:00:00 EST 2012, score=0.15982933342456818}} Document{{title=Summer of Goliath, released=Thu Jul 07 20:00:00 EDT 2011, score=0.13038821518421173}}
定义查询。
创建一个名为
sort-by-date.js
的新文件并粘贴以下代码:1 const { MongoClient } = require("mongodb"); 2 3 // Replace the uri string with your MongoDB deployments connection string. 4 const uri = 5 "<connection-string>"; 6 7 const client = new MongoClient(uri); 8 9 async function run() { 10 try { 11 await client.connect(); 12 13 // set namespace 14 const database = client.db("sample_mflix"); 15 const coll = database.collection("movies"); 16 17 // define pipeline 18 const agg = [ 19 {$search: { 20 index: "default", 21 compound: { 22 filter: {wildcard: {query: "Summer*", path: "title"}}, 23 must: [{near: {path: "released", origin: new Date("2014-04-18T00:00:00.000Z"), pivot: 13149000000}}] 24 }, 25 sort: { released: -1 } 26 }}, 27 {$limit: 5}, 28 {$project: {_id: 0, title: 1, released: 1, score: {$meta: "searchScore"}}} 29 ]; 30 31 // run pipeline 32 const result = await coll.aggregate(agg); 33 34 // print results 35 await result.forEach((doc) => console.log(doc)); 36 37 } finally { 38 await client.close(); 39 } 40 } 41 run().catch(console.dir); 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
node sort-by-date.js
{ title: 'Summer Nights', released: 2015-01-28T00:00:00.000Z, score: 0.348105788230896 } { title: 'Summertime', released: 2014-08-01T00:00:00.000Z, score: 0.5917375683784485 } { title: 'Summer of Blood', released: 2014-04-17T00:00:00.000Z, score: 0.9934720396995544 } { title: 'Summer Games', released: 2012-02-08T00:00:00.000Z, score: 0.15982933342456818 } { title: 'Summer of Goliath', released: 2011-07-08T00:00:00.000Z, score: 0.13038821518421173 }
定义查询。
创建一个名为
sort-by-date.py
的新文件并粘贴以下代码:1 import datetime 2 import pymongo 3 4 # connect to your Atlas cluster 5 client = pymongo.MongoClient('<connection-string>') 6 7 # define pipeline 8 pipeline = [ 9 {'$search': { 10 'index': 'default', 11 'compound': { 12 'filter': {'wildcard': {'query': 'Summer*', 'path': 'title'}}, 13 'must': {'near': { 14 "path": "released", 15 "origin": datetime.datetime(2014, 4, 18, 0, 0, 0, 0), 16 "pivot": 13149000000 17 }}}, 18 'sort': { 'released': -1 }}}, 19 {'$limit': 5}, 20 {'$project': {'_id': 0, 'title': 1, 'released': 1, 'score': {'$meta': 'searchScore'}}} 21 ] 22 23 # run pipeline 24 result = client['sample_mflix']['movies'].aggregate(pipeline) 25 26 # print results 27 for i in result: 28 print(i) 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
python sort-by-date.py
{'title': 'Summer Nights', 'released': datetime.datetime(2015, 1, 28, 0, 0), 'score': 0.348105788230896} {'title': 'Summertime', 'released': datetime.datetime(2014, 8, 1, 0, 0), 'score': 0.5917375683784485} {'title': 'Summer of Blood', 'released': datetime.datetime(2014, 4, 17, 0, 0), 'score': 0.9934720396995544} {'title': 'Summer Games', 'released': datetime.datetime(2012, 2, 8, 0, 0), 'score': 0.15982933342456818} {'title': 'Summer of Goliath', 'released': datetime.datetime(2011, 7, 8, 0, 0), 'score': 0.13038821518421173}
数字搜索和排序
以下查询演示如何按数值字段对结果进行排序。它使用范围操作符搜索赢得 10 个或更多奖项的电影,然后按数值字段值降序对结果进行排序。
查询使用了下列管道阶段:
$search
阶段搜索awards.wins
字段,并按降序对结果排序。$limit
阶段将输出限制为5
个结果。$project
阶段排除title
和awards.wins
以外的所有字段。
运行此查询。
将以下查询复制并粘贴到 Query Editor 中,然后点击 Query Editor 中的 Search 按钮。
[ { "$search": { "range": { "path": "awards.wins", "gte": 10 }, "sort": { "awards.wins": -1, } } } ]
SCORE: 1 _id: "573a13d5f29313caabd9cae7" fullplot: "Based on an incredible true story of one man's fight for survival and …" imdb: Object ... year: 2013 ... awards: Object wins: 267 ... ... SCORE: 1 _id: "573a13c7f29313caabd74a4d" fullplot: "Dr. Ryan Stone (Sandra Bullock) is a brilliant medical engineer on her…" imdb: Object ... year: 2013 ... awards: Object wins: 231 ... ... SCORE: 1 _id: "573a13cbf29313caabd808d2" fullplot: "Dr. Ryan Stone (Sandra Bullock) is a brilliant medical engineer on her…" imdb: Object ... year: 2013 ... awards: Object wins: 231 ... ... SCORE: 1 _id: “573a13dff29313caabdb7adb”" fullplot: "Actor Riggan Thomson is most famous for his movie role from over twent…" imdb: Object ... year: 2014 ... awards: Object wins: 210 ... ... SCORE: 1 _id: "573a13bef29313caabd5c06c" plot: "The life of Mason, from early childhood to his arrival at college." imdb: Object ... runtime: 165 ... awards: Object wins: 185 ... ... SCORE: 1 _id: "573a139ef29313caabcfbd6a" fullplot: "While Frodo & Sam continue to approach Mount Doom to destroy the One R…" imdb: Object ... year: 2003 ... awards: Object wins: 175 ... ... SCORE: 1 _id: "573a13b5f29313caabd447f5" plot: "In rural Texas, welder and hunter Llewelyn Moss discovers the remains …" imdb: Object ... year: 2007 ... awards: Object wins: 172 ... ... SCORE: 1 _id: "573a13c3f29313caabd68d9f" plot: "On a fall night in 2003, Harvard undergrad and computer programming ge…" imdb: Object ... year: 2010 ... awards: Object wins: 171 ... ... SCORE: 1 _id: "573a13c5f29313caabd6ee61" fullplot: "Dom Cobb is a skilled thief, the absolute best in the dangerous art of…" imdb: Object ... year: 2010 ... awards: Object wins: 162 ... ... SCORE: 1 _id: "573a13bdf29313caabd58fd3" plot: "The story of Jamal Malik, an 18 year-old orphan from the slums of Mumb…" imdb: Object ... year: 2008 ... awards: Object wins: 161 ... ...
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "range": { 5 "path": "awards.wins", 6 "gte": 10 7 }, 8 "sort": { 9 "awards.wins": -1, 10 } 11 } 12 }, 13 { 14 $limit: 5 15 }, 16 { 17 "$project": { 18 "_id": 0, 19 "title": 1, 20 "awards.wins": 1 21 } 22 } 23 ])
[ { title: '12 Years a Slave', awards: { wins: 267 } }, { title: 'Gravity', awards: { wins: 231 } }, { title: 'Gravity', awards: { wins: 231 } }, { title: 'Birdman: Or (The Unexpected Virtue of Ignorance)', awards: { wins: 210 } }, { title: 'Boyhood', awards: { wins: 185 } } ]
在MongoDB Compass中,从下拉列表中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。单击 Add Stage 以添加其他阶段。
管道阶段 | 查询 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
|
| ||||||||||
|
| ||||||||||
|
|
如果启用了 Auto Preview,MongoDB Compass 将在 $limit
管道阶段旁边显示以下文档:
[ { title: '12 Years a Slave', awards: { wins: 267 } }, { title: 'Gravity', awards: { wins: 231 } }, { title: 'Gravity', awards: { wins: 231 } }, { title: 'Birdman: Or (The Unexpected Virtue of Ignorance)', awards: { wins: 210 } }, { title: 'Boyhood', awards: { wins: 185 } } ]
定义查询。
在您的项目中,将
Program.cs
文件的内容替换为以下代码。1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class SortByNumbers 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // define search options 23 var searchOptions = new SearchOptions<MovieDocument>() 24 { 25 Sort = Builders<MovieDocument>.Sort.Descending(movies => movies.Awards.Wins), 26 IndexName = "default" 27 }; 28 29 // define and run pipeline 30 var results = moviesCollection.Aggregate() 31 .Search( 32 Builders<MovieDocument>.Search.Range(movie => movie.Awards.Wins, SearchRangeBuilder.Gte(10)), searchOptions) 33 .Project<MovieDocument>(Builders<MovieDocument>.Projection 34 .Exclude(movie => movie.Id) 35 .Include(movie => movie.Title) 36 .Include(movie => movie.Awards.Wins)) 37 .Limit(5) 38 .ToList(); 39 40 // print results 41 foreach (var movie in results) 42 { 43 Console.WriteLine(movie.ToJson()); 44 } 45 } 46 } 47 48 [ ]49 public class MovieDocument 50 { 51 [ ]52 public ObjectId Id { get; set; } 53 public string Title { get; set; } 54 public Award Awards { get; set; } 55 } 56 57 public class Award 58 { 59 [ ]60 public int Wins { get; set; } 61 } 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
dotnet run Program.cs
{ "title" : "12 Years a Slave", "awards" : { "wins" : 267 } } { "title" : "Gravity", "awards" : { "wins" : 231 } } { "title" : "Gravity", "awards" : { "wins" : 231 } } { "title" : "Birdman: Or (The Unexpected Virtue of Ignorance)", "awards" : { "wins" : 210 } } { "title" : "Boyhood", "awards" : { "wins" : 185 } }
定义查询。
创建一个名为
sort-by-numbers.go
的新文件并粘贴以下代码:1 package main 2 3 import ( 4 "context" 5 "fmt" 6 7 "go.mongodb.org/mongo-driver/v2/bson" 8 "go.mongodb.org/mongo-driver/v2/mongo" 9 "go.mongodb.org/mongo-driver/v2/mongo/options" 10 ) 11 12 func main() { 13 // connect to your Atlas cluster 14 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>")) 15 if err != nil { 16 panic(err) 17 } 18 defer client.Disconnect(context.TODO()) 19 20 // set namespace 21 collection := client.Database("sample_mflix").Collection("movies") 22 23 // define pipeline stages 24 searchStage := bson.D{{Key: "$search", Value: bson.D{ 25 {Key: "index", Value: "default"}, 26 {Key: "range", Value: bson.D{ 27 {Key: "path", Value: "awards.wins"}, 28 {Key: "gte", Value: 10}, 29 }}, 30 {Key: "sort", Value: bson.D{{Key: "awards.wins", Value: -1}}}, 31 }}} 32 limitStage := bson.D{{Key: "$limit", Value: 5}} 33 projectStage := bson.D{{Key: "$project", Value: bson.D{{Key: "title", Value: 1}, {Key: "awards.wins", Value: 1}, {Key: "_id", Value: 0}}}} 34 35 // run pipeline 36 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}) 37 if err != nil { 38 panic(err) 39 } 40 41 // print results 42 var results []bson.D 43 if err = cursor.All(context.TODO(), &results); err != nil { 44 panic(err) 45 } 46 for _, result := range results { 47 fmt.Println(result) 48 } 49 } 指定
<connection-string>
(代表的电子邮件地址)。
定义查询。
创建一个名为
SortByNumbers.java
的新文件并粘贴以下代码:1 import java.util.Arrays; 2 3 import static com.mongodb.client.model.Aggregates.limit; 4 import static com.mongodb.client.model.Aggregates.project; 5 import static com.mongodb.client.model.Projections.excludeId; 6 import static com.mongodb.client.model.Projections.fields; 7 import static com.mongodb.client.model.Projections.include; 8 import com.mongodb.client.MongoClient; 9 import com.mongodb.client.MongoClients; 10 import com.mongodb.client.MongoCollection; 11 import com.mongodb.client.MongoDatabase; 12 import org.bson.Document; 13 14 public class SortByNumbers { 15 public static void main( String[] args ) { 16 // define query 17 Document agg = 18 new Document("$search", 19 new Document("index", "default") 20 .append("range", 21 new Document("path", "awards.wins") 22 .append("gte", 10L)) 23 .append("sort", 24 new Document("awards.wins", -1L))); 25 26 // specify connection 27 String uri = "<connection-string>"; 28 29 // establish connection and set namespace 30 try (MongoClient mongoClient = MongoClients.create(uri)) { 31 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 32 MongoCollection<Document> collection = database.getCollection("movies"); 33 34 // run query and print results 35 collection.aggregate(Arrays.asList(agg, 36 limit(5), 37 project(fields(excludeId(), include("title"), include("awards.wins"))))) 38 .forEach(doc -> System.out.println(doc.toJson())); 39 } 40 } 41 } 注意
要在 Maven 环境中运行示例代码,请将以下代码添加到文件中的 import 语句上方。
package com.mongodb.drivers; 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
javac SortByNumbers.java java SortByNumbers
{"title": "12 Years a Slave", "awards": {"wins": 267}} {"title": "Gravity", "awards": {"wins": 231}} {"title": "Gravity", "awards": {"wins": 231}} {"title": "Birdman: Or (The Unexpected Virtue of Ignorance)", "awards": {"wins": 210}} {"title": "Boyhood", "awards": {"wins": 185}}
定义查询。
创建一个名为
SortByNumbers.kt
的新文件并粘贴以下代码:1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 val database = mongoClient.getDatabase("sample_mflix") 13 val collection = database.getCollection<Document>("movies") 14 15 runBlocking { 16 // define query 17 val agg = Document( 18 "\$search", 19 Document("index", "default") 20 .append( 21 "range", 22 Document("path", "awards.wins") 23 .append("gte", 10L) 24 ) 25 .append( 26 "sort", 27 Document("awards.wins", -1L) 28 ) 29 ) 30 31 // run query and print results 32 val resultsFlow = collection.aggregate<Document>( 33 listOf( 34 agg, 35 limit(5), 36 project(fields( 37 excludeId(), 38 include("title", "awards.wins") 39 )) 40 ) 41 ) 42 resultsFlow.collect { println(it) } 43 } 44 mongoClient.close() 45 } 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
kotlin SortByNumbers.kt
Document{{title=12 Years a Slave, awards=Document{{wins=267}}}} Document{{title=Gravity, awards=Document{{wins=231}}}} Document{{title=Gravity, awards=Document{{wins=231}}}} Document{{title=Birdman: Or (The Unexpected Virtue of Ignorance), awards=Document{{wins=210}}}} Document{{title=Boyhood, awards=Document{{wins=185}}}}
定义查询。
创建一个名为
sort-by-numbers.js
的新文件并粘贴以下代码:1 const { MongoClient } = require("mongodb"); 2 3 // Replace the uri string with your MongoDB deployments connection string. 4 const uri = 5 "<connection-string>"; 6 7 const client = new MongoClient(uri); 8 9 async function run() { 10 try { 11 await client.connect(); 12 13 // set namespace 14 const database = client.db("sample_mflix"); 15 const coll = database.collection("movies"); 16 17 // define pipeline 18 const agg = [ 19 { 20 '$search': { 21 'index': 'default', 22 'range': { 23 'path': 'awards.wins', 24 'gte': 10 25 }, 26 'sort': { 27 'awards.wins': -1 28 } 29 } 30 }, { 31 '$limit': 5 32 }, { 33 '$project': { 34 '_id': 0, 35 'title': 1, 36 'awards.wins': 1 37 } 38 } 39 ]; 40 41 // run pipeline 42 const result = await coll.aggregate(agg); 43 44 // print results 45 await result.forEach((doc) => console.log(doc)); 46 47 } finally { 48 await client.close(); 49 } 50 } 51 run().catch(console.dir); 指定
<connection-string>
(代表的电子邮件地址)。
定义查询。
创建一个名为
sort-by-numbers.py
的新文件并粘贴以下代码:1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 { 9 '$search': { 10 'index': 'default', 11 'range': { 12 'path': 'awards.wins', 13 'gte': 10 14 }, 15 'sort': { 16 'awards.wins': -1 17 } 18 } 19 }, { 20 '$limit': 5 21 }, { 22 '$project': {'_id': 0, 'title': 1, 'awards.wins': 1 23 } 24 } 25 ] 26 27 # run pipeline 28 result = client['sample_mflix']['movies'].aggregate(pipeline) 29 30 # print results 31 for i in result: 32 print(i) 指定
<connection-string>
(代表的电子邮件地址)。
运行此查询。
python sort-by-numbers.py
{'title': '12 Years a Slave', 'awards': {'wins': 267}} {'title': 'Gravity', 'awards': {'wins': 231}} {'title': 'Gravity', 'awards': {'wins': 231}} {'title': 'Birdman: Or (The Unexpected Virtue of Ignorance)', 'awards': {'wins': 210}} {'title': 'Boyhood', 'awards': {'wins': 185}}
字符串搜索和排序
基本示例
对 sample_mflix.movies
命名空间的以下查询使用 $search
阶段执行以下操作:
搜索标题中包含“
country
”一词的电影。使用
sort
选项以升序排列结果。
该查询使用$limit
阶段将输出限制为5
文档。 它还使用$project
阶段执行以下操作:
忽略结果中除
title
之外的所有字段。添加名为
score
的字段。
db.movies.aggregate([ { "$search": { "text": { "path": "title", "query": "country" }, "sort": { "title": 1 } } }, { "$limit": 5 }, { "$project": { "_id": 0, "title": 1, "score": { "$meta": "searchScore" } } } ])
[ { title: 'A Country Called Home', score: 2.536633253097534 }, { title: 'A Month in the Country', score: 2.258953094482422 }, { title: 'A Quiet Place in the Country', score: 2.0360684394836426 }, { title: 'A Sunday in the Country', score: 2.258953094482422 }, { title: 'Another Country', score: 3.3635599613189697 } ]
复合通配符搜索和排序示例
以下查询演示如何按字符串字段查询结果并对其进行排序。它搜索以 Prance
或 Prince
开头的标题,并按 title
字段升序对结果进行排序。
查询使用了下列管道阶段:
$search
使用带有通配符操作符的should
子句搜索title
字段,搜索以Prance
和Prince
开头的名称。该查询还指定结果必须按title
字段升序排序。$limit
阶段将输出限制为5
个结果。$project
阶段到:排除
title
以外的所有字段。添加名为
score
的字段。
[ { $search: { "compound": { "should": [{ "wildcard": { "query": ["Prance*"], "path": "title", "allowAnalyzedField": true } }, { "wildcard": { "query": ["Prince*"], "path": "title", "allowAnalyzedField": true } }] }, "sort": { "title": 1 } } } ]
SCORE: 1 _id: "573a1398f29313caabceb98e" plot: "A farm girl nurses a wounded reindeer she believes is one of Santa's, …" genres: Array runtime: 103 ... title: "Prancer" ... SCORE: 1 _id: "573a13a5f29313caabd14f54" plot: "Preteen brothers from a broken marriage live with their mother, Denise…" genres: Array runtime: 91 ... title: "Prancer Returns" ... SCORE: 1 _id: "573a13f5f29313caabde3755" plot: "A troubled teenager attempts to conquer the love of his life by becomi…" genres: Array runtime: 78 ... title: "Prince" ... SCORE: 1 _id: "573a13d8f29313caabda665f" fullplot: "Two highway road workers spend the summer of 1988 away from their city…" imdb: Object year: 2013 ... title: "Prince Avalanche" ... SCORE: 1 _id: "573a13bdf29313caabd5898a" plot: "A New York street drama about the lives of immigrants in America seeki…" genres: Array runtime: 70 ... title: "Prince of Broadway" ... SCORE: 1 _id: "573a1398f29313caabcea967" fullplot: "A sinister secret has been kept in the basement of an abandoned Los An…" imdb: Object year: 1987 ... title: "Prince of Darkness" ... SCORE: 1 _id: "573a1393f29313caabcde40d" plot: "An unscrupulous agent for the Borgias suffers a change of heart when a…" genres: Array runtime: 107 ... title: "Princess of Foxes" ... SCORE: 1 _id: "573a13b5f29313caabd43816" plot: "A young fugitive prince and princess must stop a villain who unknowing…" genres: Array runtime: 116 ... title: "Prince of Persia: The Sands of Time" ... SCORE: 1 _id: "573a1397f29313caabce8081" plot: "A New York City narcotics detective reluctantly agrees to cooperate wi…" genres: Array runtime: 167 ... title: "Prince of the City" ... SCORE: 1 _id: "573a13a2f29313caabd0a767" plot: "Six old-style funny silhouetted fairy tales for not so-old-style peopl…" genres: Array runtime: 70 ... title: "Princes and Princesses" ...
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
Search Tester 可能不会显示其所返回文档的所有字段。要查看所有字段,包括在查询路径中指定的字段,请展开结果中的文档。
1 db.movies.aggregate([{ 2 $search: { 3 "index": "default", 4 "compound": { 5 "should": [{ 6 "wildcard": { 7 "query": ["Prance*"], 8 "path": "title", 9 "allowAnalyzedField": true 10 } 11 }, 12 { 13 "wildcard": { 14 "query": ["Prince*"], 15 "path": "title", 16 "allowAnalyzedField": true 17 } 18 }] 19 }, 20 "sort": { 21 "title": 1 22 } 23 }}, 24 { 25 $limit: 5 26 }, 27 { 28 $project: { 29 "_id": 0, 30 "title": 1, 31 "score": { "$meta": "searchScore" } 32 } 33 } 34 ])
[ { title: 'Prancer', score: 1 }, { title: 'Prancer Returns', score: 1 }, { title: 'Prince', score: 1 }, { title: 'Prince Avalanche', score: 1 }, { title: 'Prince of Broadway', score: 1 } ]
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
管道阶段 | 查询 | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
| ||||||||||||||||||||
|
| ||||||||||||||||||||
|
|
如果启用了 Auto Preview,MongoDB Compass 将在 $project
管道阶段旁边显示以下文档:
{ title: 'Prancer', score: 1 }, { title: 'Prancer Returns', score: 1 }, { title: 'Prince', score: 1 }, { title: 'Prince Avalanche', score: 1 }, { title: 'Prince of Boradway', score: 1 }
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
此代码示例将执行以下任务:
导入
mongodb
包和依赖项。建立与您的 Atlas 集群的连接。
查询使用了下列管道阶段:
遍历游标以打印与查询匹配的文档。
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class SortByStrings 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // define search options 23 var searchOptions = new SearchOptions<MovieDocument>() 24 { 25 Sort = Builders<MovieDocument>.Sort.Ascending(movie => movie.Title), 26 IndexName = "default" 27 }; 28 29 // define and run pipeline 30 var results = moviesCollection.Aggregate() 31 .Search(Builders<MovieDocument>.Search.Compound() 32 .Should(Builders<MovieDocument>.Search.Wildcard(movie => movie.Title, "Prance*", true )) 33 .Should(Builders<MovieDocument>.Search.Wildcard(movie => movie.Title, "Prince*" )), searchOptions) 34 .Project<MovieDocument>(Builders<MovieDocument>.Projection 35 .Include(movie => movie.Title) 36 .Exclude(movie => movie.Id) 37 .MetaSearchScore(movie => movie.Score)) 38 .Limit(5) 39 .ToList(); 40 41 // print results 42 foreach (var movie in results) 43 { 44 Console.WriteLine(movie.ToJson()); 45 } 46 } 47 } 48 49 [ ]50 public class MovieDocument 51 { 52 [ ]53 public ObjectId Id { get; set; } 54 public string Title { get; set; } 55 public double Score { get; set; } 56 }
{ "title" : "Prancer", "score" : 1.0 } { "title" : "Prancer Returns", "score" : 1.0 } { "title" : "Prince", "score" : 1.0 } { "title" : "Prince Avalanche", "score" : 1.0 } { "title" : "Prince of Broadway", "score" : 1.0 }
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
此代码示例将执行以下任务:
导入
mongodb
包和依赖项。建立与您的 Atlas 集群的连接。
遍历游标以打印与查询匹配的文档。
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 7 "go.mongodb.org/mongo-driver/v2/bson" 8 "go.mongodb.org/mongo-driver/v2/mongo" 9 "go.mongodb.org/mongo-driver/v2/mongo/options" 10 ) 11 12 func main() { 13 // connect to your Atlas cluster 14 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>")) 15 if err != nil { 16 panic(err) 17 } 18 defer client.Disconnect(context.TODO()) 19 20 // set namespace 21 collection := client.Database("sample_mflix").Collection("movies") 22 23 // define pipeline stages 24 searchStage := bson.D{{Key: "$search", Value: bson.M{ 25 "index": "default", 26 "compound": bson.M{ 27 "should": bson.A{ 28 bson.M{ 29 "wildcard": bson.D{ 30 {Key: "path", Value: "title"}, 31 {Key: "query", Value: "Prance*"}, 32 {Key: "allowAnalyzedField", Value: true}, 33 }}, 34 bson.M{ 35 "wildcard": bson.D{ 36 {Key: "path", Value: "title"}, 37 {Key: "query", Value: "Prince*"}, 38 {Key: "allowAnalyzedField", Value: true}, 39 }}, 40 }, 41 }, 42 "sort": bson.D{{Key: "title", Value: 1}}, 43 }}} 44 45 limitStage := bson.D{{Key: "$limit", Value: 5}} 46 projectStage := bson.D{{Key: "$project", Value: bson.D{{Key: "title", Value: 1}, {Key: "_id", Value: 0}, {Key: "score", Value: bson.D{{Key: "$meta", Value: "searchScore"}}}}}} 47 48 // run pipeline 49 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}) 50 if err != nil { 51 panic(err) 52 } 53 54 // print results 55 var results []bson.D 56 if err = cursor.All(context.TODO(), &results); err != nil { 57 panic(err) 58 } 59 for _, result := range results { 60 fmt.Println(result) 61 } 62 }
[{title Prancer} {score 1}] [{title Prancer Returns} {score 1}] [{title Prince} {score 1}] [{title Prince Avalanche} {score 1}] [{title Prince of Broadway} {score 1}]
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
此代码示例将执行以下任务:
导入
mongodb
包和依赖项。建立与您的 Atlas 集群的连接。
遍历游标以打印与查询匹配的文档。
1 import java.util.Arrays; 2 import java.util.List; 3 4 import static com.mongodb.client.model.Aggregates.limit; 5 import static com.mongodb.client.model.Aggregates.project; 6 import static com.mongodb.client.model.Projections.*; 7 import com.mongodb.client.MongoClient; 8 import com.mongodb.client.MongoClients; 9 import com.mongodb.client.MongoCollection; 10 import com.mongodb.client.MongoDatabase; 11 import org.bson.Document; 12 13 import java.util.Date; 14 15 public class SortByString { 16 public static void main( String[] args ) { 17 // define clause 18 List<Document> shouldClause = 19 List.of( 20 new Document( 21 "wildcard", 22 new Document("query", "Prance*") 23 .append("path", "title") 24 .append("allowAnalyzedField", true)), 25 new Document( 26 "wildcard", 27 new Document("query", "Prince*") 28 .append("path", "title") 29 .append("allowAnalyzedField", true))); 30 31 // define query 32 Document agg = 33 new Document( 34 "$search", 35 new Document("index", "default") 36 .append("compound", 37 new Document("should", shouldClause)) 38 .append("sort", new Document("title", 1L))); 39 40 // specify connection 41 String uri = "<connection-string>"; 42 43 // establish connection and set namespace 44 try (MongoClient mongoClient = MongoClients.create(uri)) { 45 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 46 MongoCollection<Document> collection = database.getCollection("movies"); 47 48 // run query and print results 49 collection.aggregate(Arrays.asList(agg, 50 limit(5), 51 project(fields(excludeId(), include("title"), computed("score", new Document("$meta", "searchScore")))))) 52 .forEach(doc -> System.out.println(doc.toJson())); 53 } 54 } 55 }
{"title": "Prancer", "score": 1.0} {"title": "Prancer Returns", "score": 1.0} {"title": "Prince", "score": 1.0} {"title": "Prince Avalanche", "score": 1.0} {"title": "Prince of Broadway", "score": 1.0}
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
此代码示例将执行以下任务:
导入
mongodb
包和依赖项。建立与您的 Atlas 集群的连接。
打印与
AggregateFlow
实例中的查询相匹配的文档。
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 val database = mongoClient.getDatabase("sample_mflix") 13 val collection = database.getCollection<Document>("movies") 14 15 runBlocking { 16 // define clause 17 val shouldClause = listOf( 18 Document("wildcard", Document("query", "Prance*") 19 .append("path", "title") 20 .append("allowAnalyzedField", true)), 21 Document("wildcard", Document("query", "Prince*") 22 .append("path", "title") 23 .append("allowAnalyzedField", true)) 24 ) 25 26 // define query 27 val agg = Document( 28 "\$search", 29 Document("index", "default") 30 .append( 31 "compound", 32 Document("should", shouldClause) 33 ) 34 .append("sort", Document("title", 1L)) 35 ) 36 37 // run query and print results 38 val resultsFlow = collection.aggregate<Document>( 39 listOf( 40 agg, 41 limit(5), 42 project(fields( 43 excludeId(), 44 include("title"), 45 computed("score", Document("\$meta", "searchScore")) 46 )) 47 ) 48 ) 49 resultsFlow.collect { println(it) } 50 } 51 mongoClient.close() 52 }
Document{{title=Prancer, score=1.0}} Document{{title=Prancer Returns, score=1.0}} Document{{title=Prince, score=1.0}} Document{{title=Prince Avalanche, score=1.0}} Document{{title=Prince of Broadway, score=1.0}}
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
此代码示例将执行以下任务:
导入
mongodb
,即 MongoDB 的 Node.js 驱动程序。创建一个
MongoClient
类实例,以建立与 Atlas 集群的连接。查询使用了下列管道阶段:
遍历游标以打印与查询匹配的文档。
1 const { MongoClient } = require("mongodb"); 2 3 // Replace the uri string with your MongoDB deployments connection string. 4 const uri = 5 "<connection-string>"; 6 7 const client = new MongoClient(uri); 8 9 async function run() { 10 try { 11 await client.connect(); 12 13 // set namespace 14 const database = client.db("sample_mflix"); 15 const coll = database.collection("movies"); 16 17 // define pipeline 18 const agg = [ 19 { 20 '$search': { 21 'compound': { 22 'should': [ 23 { 24 'wildcard': { 25 'query': [ 26 'Prance*' 27 ], 28 'path': 'title', 29 'allowAnalyzedField': true 30 } 31 }, { 32 'wildcard': { 33 'query': [ 34 'Prince*' 35 ], 36 'path': 'title', 37 'allowAnalyzedField': true 38 } 39 } 40 ] 41 }, 42 'sort': { 'title': 1 } 43 } 44 }, { 45 '$limit': 5 46 }, { 47 '$project': {'_id': 0, 'title': 1, 'score': {'$meta': 'searchScore'} 48 } 49 } 50 ]; 51 52 // run pipeline 53 const result = await coll.aggregate(agg); 54 55 // print results 56 await result.forEach((doc) => console.log(doc)); 57 58 } finally { 59 await client.close(); 60 } 61 } 62 run().catch(console.dir);
{ title: 'Prancer', score: 1 } { title: 'Prancer Returns', score: 1 } { title: 'Prince', score: 1 } { title: 'Prince Avalanche', score: 1 } { title: 'Prince of Broadway', score: 1 }
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
以下代码示例:
导入
pymongo
、MongoDB 的 Python 驱动程序和dns
模块,这是使用 DNS 种子列表连接字符串将pymongo
连接到Atlas
所必需的。创建一个
MongoClient
类实例,以建立与 Atlas 集群的连接。查询使用了下列管道阶段:
遍历游标以打印与查询匹配的文档。
1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 {'$search': { 9 'compound': { 10 'should': [{'wildcard': {'query': 'Prance*', 'path': 'title', 'allowAnalyzedField': True}}, 11 {'wildcard': {'query': 'Prince*', 'path': 'title', 'allowAnalyzedField': True}}] 12 }, 13 'sort': { 'title': 1 }}}, 14 {'$limit': 5}, 15 {'$project': {'_id': 0, 'title': 1, 'score': {'$meta': 'searchScore'}}} 16 ] 17 18 # run pipeline 19 result = client['sample_mflix']['movies'].aggregate(pipeline) 20 21 # print results 22 for i in result: 23 print(i)
{'title': 'Prancer', 'score': 1.0} {'title': 'Prancer Returns', 'score': 1.0} {'title': 'Prince', 'score': 1.0} {'title': 'Prince Avalanche', 'score': 1.0} {'title': 'Prince of Broadway', 'score': 1.0}
Atlas Search 结果包含电影片名以 Prance
和 Prince
开头的文档。Atlas Search 返回片名为 Prance
后跟Prince
的电影,因为 Atlas Search 按title
字段升序对文档进行排序。
不区分大小写的排序示例
以下查询显示了如何在不区分字母大小写的情况下对结果进行排序。它使用文本操作符搜索 title
字段中包含术语 train
的电影,然后按 title
字段值升序对结果进行排序。
该查询指定了一个$limit
阶段以将结果中的文档限制为5
,还指定了一个$project
阶段来执行以下操作:
仅在结果中包含
_id
、title
和awards
字段。在结果中添加名为 score 的字段。
[ { "$search": { "text": { "path": "title", "query": "train", }, "sort": { "title": 1 } } } ]
SCORE: 3.317898988723755 _id: "573a139cf29313caabcf662c" plot: "A train filled with atomic devices threatens to destroy the city of De…" genres: Array runtime: 122 SCORE: 3.317898988723755 _id: "64de50ae2932de4dd3203061" genres: Array title: "atomic train" awards: Object SCORE: 2.228306293487549 _id: "573a13bbf29313caabd52ff4" fullplot: "Long ago up North on the Island of Berk, the young Viking, Hiccup, wan…" imdb: Object year: 2010 SCORE: 2.228306293487549 _id: "64de50da2932de4dd3204393" genres: Array title: "how to train your dragon" awards: Object SCORE: 2.008449077606201 _id: "573a13ccf29313caabd83281" plot: "When Hiccup and Toothless discover an ice cave that is home to hundred…" genres: Array runtime: 102 SCORE: 1.4400973320007324 _id: "573a13b1f29313caabd36490" plot: "The life and times of Howard Zinn: the historian, activist, and author…" genres: Array runtime: 78 SCORE: 2.228306293487549 _id: "573a1394f29313caabce0fb4" plot: "A marshal tries to bring the son of an old friend, an autocratic cattl…" genres: Array runtime: 95 SCORE: 2.8528976440429688 _id: "573a13c8f29313caabd78a6b" plot: "A couple embarks on a journey home for Chinese new year along with 130…" genres: Array runtime: 85 SCORE: 2.502213716506958 _id: "573a13baf29313caabd50811" plot: "Two thugs from the Perth suburb of Midland catch the last train to Fre…" genres: Array runtime: 89 SCORE: 2.502213716506958 _id: "573a13a7f29313caabd1b667" fullplot: "A teacher and a gangster meet by chance in a small town pharmacy. As a…" imdb: Object year: 2002
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
SCORE: 3.317898988723755 _id: "573a139cf29313caabcf662c" plot: "A train filled with atomic devices threatens to destroy the city of De…" genres: Array runtime: 122 SCORE: 2.2382168769836426 _id: "573a13bbf29313caabd52ff4" fullplot: "Long ago up North on the Island of Berk, the young Viking, Hiccup, wan…" imdb: object year: 2010 SCORE: 2.008449077606201 _id: "573a13ccf29313caabd83281" plot: "When Hiccup and Toothless discover an ice cave that is home to hundred…" genres: Array runtime: 102 SCORE: 1.4400973320007324 _id: "573a13b1f29313caabd36490" plot: "The life and times of Howard Zinn: the historian, activist, and author…" genres: Array runtime: 78 SCORE: 2.8528976440429688 _id: "573a13c8f29313caabd78a6b" plot: "A couple embarks on a journey home for Chinese new year along with 130…" genres: Array runtime: 85 SCORE: 2.228306293487549 _id: "573a1394f29313caabce0fb4" plot: "A marshal tries to bring the son of an old friend, an autocratic cattl…" genres: Array runtime: 95 SCORE: 2.502213716506958 _id: "573a13baf29313caabd50811" plot: "Two thugs from the Perth suburb of Midland catch the last train to Fre…" genres: Array runtime: 89 SCORE: 2.502213716506958 _id: "573a13a7f29313caabd1b667" fullplot: "A teacher and a gangster meet by chance in a small town pharmacy. As a…" imdb: Object year: 2002 SCORE: 3.3326687812805176 _id: "573a139af29313caabcef573" plot: "A vengeful New York transit cop decides to steal a trainload of subway…" genres: Array runtime: 110 SCORE: 3.3326687812805176 _id: "573a1398f29313caabceb8f2" plot: "Three stories are connected by a Memphis hotel and the spirit of Elvis…" genres: Array runtime: 110
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
db.movies.aggregate( { "$search": { "index": "default", "text": { "path": "title", "query": "train", }, "sort": { "title": 1 } } }, { "$limit": 5 }, { "$project": { "_id": 1, "title": 1, "awards": 1, "score": { $meta: "searchScore" } } } )
[ { _id: ObjectId("573a139cf29313caabcf662c"), title: 'Atomic Train', awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' }, score: 3.317898988723755 }, { _id: ObjectId("64de50ae2932de4dd3203061"), title: 'atomic train', awards: { wins: 1, nominations: 1 }, score: 3.317898988723755 }, { _id: ObjectId("573a13bbf29313caabd52ff4"), title: 'How to Train Your Dragon', awards: { wins: 32, nominations: 51, text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.' }, score: 2.228306293487549 }, { _id: ObjectId("64de50da2932de4dd3204393"), title: 'how to train your dragon', awards: { wins: 32, nominations: 51 }, score: 2.228306293487549 }, { _id: ObjectId("573a13ccf29313caabd83281"), title: 'How to Train Your Dragon 2', awards: { wins: 18, nominations: 52, text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.' }, score: 2.008449077606201 } ]
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
[ { _id: ObjectId("573a139cf29313caabcf662c"), title: 'Atomic Train', awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' }, score: 3.3326687812805176 }, { _id: ObjectId("573a13bbf29313caabd52ff4"), title: 'How to Train Your Dragon', awards: { wins: 32, nominations: 51, text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.' }, score: 2.2382168769836426 }, { _id: ObjectId("573a13ccf29313caabd83281"), title: 'How to Train Your Dragon 2', awards: { wins: 18, nominations: 52, text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.' }, score: 2.0173802375793457 }, { _id: ObjectId("573a13b1f29313caabd36490"), title: "Howard Zinn: You Can't Be Neutral on a Moving Train", awards: { wins: 1, nominations: 0, text: '1 win.' }, score: 1.446497917175293 }, { _id: ObjectId("573a13c8f29313caabd78a6b"), title: 'Last Train Home', awards: { wins: 14, nominations: 9, text: '14 wins & 9 nominations.' }, score: 2.8655927181243896 } ]
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
管道阶段 | 查询 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
|
| ||||||||||
|
| ||||||||||
|
|
如果已启用 Auto Preview,则 MongoDB Compass 将在 $project
管道阶段旁边显示以下文档:
_id: ObjectId('573a139cf29313caabcf662c') title: 'Atomic Train' awards: Object score: 3.317898988723755 _id: ObjectId("64de50ae2932de4dd3203061") title: 'atomic train' awards: Object score: 3.317898988723755 _id: ObjectId('573a13bbf29313caabd52ff4') title: 'How to Train Your Dragon' awards: Object score: 2.228306293487549 _id: ObjectId("64de50da2932de4dd3204393"), title: 'how to train your dragon' awards: score: 2.228306293487549 _id: ObjectId('573a13ccf29313caabd83281') title: 'How to Train Your Dragon 2' awards: object score: 2.0173802375793457
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class CaseInsensitiveSort 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new camelCaseConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var yourDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = yourDatabase.GetCollection<MovieDocument>("movies"); 21 22 // define options for search 23 var searchOptions = new SearchOptions<MovieDocument>() { 24 Sort = Builders<MovieDocument>.Sort.Ascending(movie => movie.Title), 25 IndexName = "default" 26 }; 27 28 // define and run pipeline 29 var results = moviesCollection.Aggregate() 30 .Search(Builders<MovieDocument>.Search.Text(movie => movie.Title, "train"), searchOptions) 31 .Limit (5) 32 .Project<MovieDocument>(Builders<MovieDocument>.Projection 33 .Include(movie => movie.Id) 34 .Include(movie => movie.Title) 35 .Include(movie => movie.Awards) 36 .MetaSearchScore(movie => movie.Score)) 37 .ToList(); 38 39 // print results 40 foreach (var movie in results) 41 { 42 Console.WriteLine(movie.ToJson()); 43 } 44 } 45 } 46 47 [ ]48 public class MovieDocument 49 { 50 [ ]51 public ObjectId Id { get; set; } 52 public string Title { get; set; } 53 public Award Awards { get; set; } 54 public double Score { get; set; } 55 } 56 57 [ ]58 public class Award 59 { 60 public int Wins { get; set; } 61 public int Nominations { get; set; } 62 }
{ "_id" : ObjectId("573a139cf29313caabcf662c"), "title" : "Atomic Train", "awards" : { "wins" : 1, "nominations" : 1 }, "score" : 3.3035578727722168 } { "_id" : ObjectId("64de50ae2932de4dd3203061"), "title" : "atomic train", "awards" : { "wins" : 1, "nominations" : 1 }, "score" : 3.3035578727722168 } { "_id" : ObjectId("573a13bbf29313caabd52ff4"), "title" : "How to Train Your Dragon", "awards" : { "wins" : 32, "nominations" : 51 }, "score" : 2.2186923027038574 } { "_id" : ObjectId("64de50da2932de4dd3204393"), "title" : "how to train your dragon", "awards" : { "wins" : 32, "nominations" : 51 }, "score" : 2.2186923027038574 } { "_id" : ObjectId("573a13ccf29313caabd83281"), "title" : "How to Train Your Dragon 2", "awards" : { "wins" : 18, "nominations" : 52 }, "score" : 1.9997868537902832 }
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
{ "_id" : ObjectId("573a139cf29313caabcf662c"), "title" : "Atomic Train", "awards" : { "wins" : 1, "nominations" : 1 }, "score" : 3.3035225868225098 } { "_id" : ObjectId("573a13bbf29313caabd52ff4"), "title" : "How to Train Your Dragon", "awards" : { "wins" : 32, "nominations" : 51 }, "score" : 2.2186522483825684 } { "_id" : ObjectId("573a13ccf29313caabd83281"), "title" : "How to Train Your Dragon 2", "awards" : { "wins" : 18, "nominations" : 52 }, "score" : 1.9997482299804688 } { "_id" : ObjectId("573a13b1f29313caabd36490"), "title" : "Howard Zinn: You Can't Be Neutral on a Moving Train", "awards" : { "wins" : 1, "nominations" : 0 }, "score" : 1.4338588714599609 } { "_id" : ObjectId("573a13c8f29313caabd78a6b"), "title" : "Last Train Home", "awards" : { "wins" : 14, "nominations" : 9 }, "score" : 2.8405368328094482 }
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 7 "go.mongodb.org/mongo-driver/bson" 8 "go.mongodb.org/mongo-driver/mongo" 9 "go.mongodb.org/mongo-driver/mongo/options" 10 ) 11 12 func main() { 13 // connect to your Atlas cluster 14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>")) 15 if err != nil { 16 panic(err) 17 } 18 defer client.Disconnect(context.TODO()) 19 20 // set namespace 21 collection := client.Database("sample_mflix").Collection("movies") 22 23 // define pipeline stages 24 searchStage := bson.D{{"$search", bson.M{ 25 "index": "default", 26 "text": bson.D{ 27 {"path", "title"}, 28 {"query", "train"}, 29 }, 30 "sort": bson.D{{"title", 1}}, 31 }}} 32 limitStage := bson.D{{"$limit", 5}} 33 projectStage := bson.D{{"$project", bson.D{{"_id", 1}, {"title", 1}, {"awards", 1}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 34 35 // run pipeline 36 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}) 37 if err != nil { 38 panic(err) 39 } 40 41 // print results 42 var results []bson.D 43 if err = cursor.All(context.TODO(), &results); err != nil { 44 panic(err) 45 } 46 for _, result := range results { 47 fmt.Println(result) 48 } 49 }
[{_id ObjectID("573a139cf29313caabcf662c")} {title Atomic Train} {awards [{wins 1} {nominations 1} {text 1 win & 1 nomination.}]} {score 3.317898988723755}] [{_id ObjectId("64de50ae2932de4dd3203061")} {title atomic train} {awards [{wins 1} {nominations 1}]} {score 3.317898988723755}] [{_id ObjectID("573a13bbf29313caabd52ff4")} {title How to Train Your Dragon} {awards [{wins 32} {nominations 51} {text Nominated for 2 Oscars. Another 30 wins & 51 nominations.}]} {score 2.228306293487549}] [{_id ObjectId("64de50da2932de4dd3204393")} {title how to train your dragon} {awards [{wins 32} {nominations 51}]} {score 2.228306293487549}] [{_id ObjectID("573a13ccf29313caabd83281")} {title How to Train Your Dragon 2} {awards [{wins 18} {nominations 52} {text Nominated for 1 Oscar. Another 17 wins & 52 nominations.}]} {score 2.008449077606201}]
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
[{_id ObjectID("573a139cf29313caabcf662c")} {title Atomic Train} {awards [{wins 1} {nominations 1} {text 1 win & 1 nomination.}]} {score 3.3326687812805176}] [{_id ObjectID("573a13bbf29313caabd52ff4")} {title How to Train Your Dragon} {awards [{wins 32} {nominations 51} {text Nominated for 2 Oscars. Another 30 wins & 51 nominations.}]} {score 2.2382168769836426}] [{_id ObjectID("573a13ccf29313caabd83281")} {title How to Train Your Dragon 2} {awards [{wins 18} {nominations 52} {text Nominated for 1 Oscar. Another 17 wins & 52 nominations.}]} {score 2.0173802375793457}] [{_id ObjectID("573a13b1f29313caabd36490")} {title Howard Zinn: You Can't Be Neutral on a Moving Train} {awards [{wins 1} {nominations 0} {text 1 win.}]} {score 1.446497917175293}] [{_id ObjectID("573a13c8f29313caabd78a6b")} {title Last Train Home} {awards [{wins 14} {nominations 9} {text 14 wins & 9 nominations.}]} {score 2.8655927181243896}]
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
1 import java.util.Arrays; 2 import static com.mongodb.client.model.Aggregates.limit; 3 import static com.mongodb.client.model.Aggregates.project; 4 import static com.mongodb.client.model.Projections.*; 5 import com.mongodb.client.MongoClient; 6 import com.mongodb.client.MongoClients; 7 import com.mongodb.client.MongoCollection; 8 import com.mongodb.client.MongoDatabase; 9 import org.bson.Document; 10 11 public class CaseInsensitiveQuery { 12 public static void main( String[] args ) { 13 // define query 14 Document agg = 15 new Document("$search", 16 new Document("index", "default") 17 .append("text", 18 new Document("path", "title") 19 .append("query", "train")) 20 .append("sort", 21 new Document("title", 1))); 22 23 // specify connection 24 String uri = "<connection-string>"; 25 26 // establish connection and set namespace 27 try (MongoClient mongoClient = MongoClients.create(uri)) { 28 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 29 MongoCollection<Document> collection = database.getCollection("movies"); 30 31 // run query and print results 32 collection.aggregate(Arrays.asList(agg, 33 limit(5), 34 project(fields(include("_id"), include("title"), include("awards"), computed("score", new Document("$meta", "searchScore")))))) 35 .forEach(doc -> System.out.println(doc.toJson())); 36 } 37 } 38 }
{"_id": {"$oid": "573a139cf29313caabcf662c"}, "title": "Atomic Train", "awards": {"wins": 1, "nominations": 1, "text": "1 win & 1 nomination."}, "score": 3.317898988723755} {"_id": {"$oid": "64de50ae2932de4dd3203061"}, "title": "atomic train", "awards": {"wins": 1, "nominations": 1}, "score": 3.317898988723755} {"_id": {"$oid": "573a13bbf29313caabd52ff4"}, "title": "How to Train Your Dragon", "awards": {"wins": 32, "nominations": 51, "text": "Nominated for 2 Oscars. Another 30 wins & 51 nominations."}, "score": 2.228306293487549} {"_id": {"$oid": "64de50da2932de4dd3204393"}, "title": "how to train your dragon", "awards": {"wins": 32, "nominations": 51}, "score": 2.228306293487549} {"_id": {"$oid": "573a13ccf29313caabd83281"}, "title": "How to Train Your Dragon 2", "awards": {"wins": 18, "nominations": 52, "text": "Nominated for 1 Oscar. Another 17 wins & 52 nominations."}, "score": 2.008449077606201}
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
{"_id": {"$oid": "573a139cf29313caabcf662c"}, "title": "Atomic Train", "awards": {"wins": 1, "nominations": 1, "text": "1 win & 1 nomination."}, "score": 3.3326687812805176} {"_id": {"$oid": "573a13bbf29313caabd52ff4"}, "title": "How to Train Your Dragon", "awards": {"wins": 32, "nominations": 51, "text": "Nominated for 2 Oscars. Another 30 wins & 51 nominations."}, "score": 2.2382168769836426} {"_id": {"$oid": "573a13ccf29313caabd83281"}, "title": "How to Train Your Dragon 2", "awards": {"wins": 18, "nominations": 52, "text": "Nominated for 1 Oscar. Another 17 wins & 52 nominations."}, "score": 2.0173802375793457} {"_id": {"$oid": "573a13b1f29313caabd36490"}, "title": "Howard Zinn: You Can't Be Neutral on a Moving Train", "awards": {"wins": 1, "nominations": 0, "text": "1 win."}, "score": 1.446497917175293} {"_id": {"$oid": "573a13c8f29313caabd78a6b"}, "title": "Last Train Home", "awards": {"wins": 14, "nominations": 9, "text": "14 wins & 9 nominations."}, "score": 2.8655927181243896}
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 val database = mongoClient.getDatabase("sample_mflix") 13 val collection = database.getCollection<Document>("movies") 14 15 runBlocking { 16 // define query 17 val agg = Document( 18 "\$search", 19 Document("index", "default") 20 .append( 21 "text", 22 Document("path", "title") 23 .append("query", "train") 24 ) 25 .append( 26 "sort", 27 Document("title", 1) 28 ) 29 ) 30 31 // run query and print results 32 val resultsFlow = collection.aggregate<Document>( 33 listOf( 34 agg, 35 limit(5), 36 project(fields( 37 excludeId(), 38 include("title", "awards"), 39 computed("score", Document("\$meta", "searchScore")) 40 )) 41 ) 42 ) 43 resultsFlow.collect { println(it) } 44 } 45 mongoClient.close() 46 }
Document{{title=atomic train, awards=Document{{wins=1, nominations=1}}, score=3.3326687812805176}} Document{{title=Atomic Train, awards=Document{{wins=1, nominations=1, text=1 win & 1 nomination.}}, score=3.3326687812805176}} Document{{title=how to train your dragon, awards=Document{{wins=32, nominations=51}}, score=2.2382168769836426}} Document{{title=How to Train Your Dragon, awards=Document{{wins=32, nominations=51, text=Nominated for 2 Oscars. Another 30 wins & 51 nominations.}}, score=2.2382168769836426}} Document{{title=How to Train Your Dragon 2, awards=Document{{wins=18, nominations=52, text=Nominated for 1 Oscar. Another 17 wins & 52 nominations.}}, score=2.0173802375793457}}
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
Document{{title=Atomic Train, awards=Document{{wins=1, nominations=1, text=1 win & 1 nomination.}}, score=3.3326687812805176}} Document{{title=How to Train Your Dragon, awards=Document{{wins=32, nominations=51, text=Nominated for 2 Oscars. Another 30 wins & 51 nominations.}}, score=2.2382168769836426}} Document{{title=How to Train Your Dragon 2, awards=Document{{wins=18, nominations=52, text=Nominated for 1 Oscar. Another 17 wins & 52 nominations.}}, score=2.0173802375793457}} Document{{title=Howard Zinn: You Can't Be Neutral on a Moving Train, awards=Document{{wins=1, nominations=0, text=1 win.}}, score=1.446497917175293}} Document{{title=Last Train Home, awards=Document{{wins=14, nominations=9, text=14 wins & 9 nominations.}}, score=2.8655927181243896}}
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
1 const { MongoClient } = require("mongodb"); 2 3 // Replace the uri string with your MongoDB deployments connection string. 4 const uri = 5 "<connection-string>"; 6 7 const client = new MongoClient(uri); 8 9 async function run() { 10 try { 11 await client.connect(); 12 13 // set namespace 14 const database = client.db("sample_mflix"); 15 const coll = database.collection("movies"); 16 17 // define pipeline 18 const agg = [ 19 { 20 '$search': { 21 'index': 'default', 22 'text': { 'path': 'title', 'query': 'train' }, 23 'sort': { 'title': 1 } 24 } 25 }, { 26 '$limit': 5 27 }, { 28 '$project': { '_id': 1, 'title': 1, 'awards': 1, 'score': { '$meta': 'searchScore' }} 29 } 30 ]; 31 32 // run pipeline 33 const result = await coll.aggregate(agg); 34 35 // print results 36 await result.forEach((doc) => console.log(doc)); 37 38 } finally { 39 await client.close(); 40 } 41 } 42 run().catch(console.dir);
{ _id: new ObjectId("573a139cf29313caabcf662c"), title: 'Atomic Train', awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' }, score: 3.317898988723755 } { _id: new ObjectId("64de50ae2932de4dd3203061"), title: 'atomic train', awards: { wins: 1, nominations: 1 }, score: 3.317898988723755 } { _id: new ObjectId("573a13bbf29313caabd52ff4"), title: 'How to Train Your Dragon', awards: { wins: 32, nominations: 51, text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.' }, score: 2.228306293487549 } { _id: new ObjectId("64de50da2932de4dd3204393"), title: 'how to train your dragon', awards: { wins: 32, nominations: 51 }, score: 2.228306293487549 } { _id: new ObjectId("573a13ccf29313caabd83281"), title: 'How to Train Your Dragon 2', awards: { wins: 18, nominations: 52, text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.' }, score: 2.008449077606201 }
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
{ _id: new ObjectId("573a139cf29313caabcf662c"), title: 'Atomic Train', awards: { wins: 1, nominations: 1, text: '1 win & 1 nomination.' }, score: 3.3326687812805176 } { _id: new ObjectId("573a13bbf29313caabd52ff4"), title: 'How to Train Your Dragon', awards: { wins: 32, nominations: 51, text: 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.' }, score: 2.2382168769836426 } { _id: new ObjectId("573a13ccf29313caabd83281"), title: 'How to Train Your Dragon 2', awards: { wins: 18, nominations: 52, text: 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.' }, score: 2.0173802375793457 } { _id: new ObjectId("573a13b1f29313caabd36490"), title: "Howard Zinn: You Can't Be Neutral on a Moving Train", awards: { wins: 1, nominations: 0, text: '1 win.' }, score: 1.446497917175293 } { _id: new ObjectId("573a13c8f29313caabd78a6b"), title: 'Last Train Home', awards: { wins: 14, nominations: 9, text: '14 wins & 9 nominations.' }, score: 2.8655927181243896 }
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 { 9 '$search': { 10 'index': 'default', 11 'text': { 'path': 'title', 'query': 'train' }, 12 'sort': { 'title': 1 } 13 } 14 }, { 15 '$limit': 5 16 }, { 17 '$project': { '_id': 1, 'title': 1, 'awards': 1, 'score': { '$meta': 'searchScore' } } 18 } 19 ] 20 21 # run pipeline 22 result = client['sample_mflix']['movies'].aggregate(pipeline) 23 24 # print results 25 for i in result: 26 print(i)
{'_id': ObjectId('573a139cf29313caabcf662c'), 'title': 'Atomic Train', 'awards': {'wins': 1, 'nominations': 1, 'text': '1 win & 1 nomination.'}, 'score': 3.317898988723755} {'_id': ObjectId('64de50ae2932de4dd3203061'), 'title': 'atomic train', 'awards': {'wins': 1, 'nominations': 1}, 'score': 3.317898988723755} {'_id': ObjectId('573a13bbf29313caabd52ff4'), 'title': 'How to Train Your Dragon', 'awards': {'wins': 32, 'nominations': 51, 'text': 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'}, 'score': 2.228306293487549} {'_id': ObjectId('64de50da2932de4dd3204393'), 'title': 'how to train your dragon', 'awards': {'wins': 32, 'nominations': 51}, 'score': 2.228306293487549} {'_id': ObjectId('573a13ccf29313caabd83281'), 'title': 'How to Train Your Dragon 2', 'awards': {'wins': 18, 'nominations': 52, 'text': 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'}, 'score': 2.008449077606201}
结果包含已排序的文档,无论字母大小写如何。 但是,如果将normalizer
设置为none
,Atlas Search 将返回以下结果:
{'_id': ObjectId('573a139cf29313caabcf662c'), 'title': 'Atomic Train', 'awards': {'wins': 1, 'nominations': 1, 'text': '1 win & 1 nomination.'}, 'score': 3.3326687812805176} {'_id': ObjectId('573a13bbf29313caabd52ff4'), 'title': 'How to Train Your Dragon', 'awards': {'wins': 32, 'nominations': 51, 'text': 'Nominated for 2 Oscars. Another 30 wins & 51 nominations.'}, 'score': 2.2382168769836426} {'_id': ObjectId('573a13ccf29313caabd83281'), 'title': 'How to Train Your Dragon 2', 'awards': {'wins': 18, 'nominations': 52, 'text': 'Nominated for 1 Oscar. Another 17 wins & 52 nominations.'}, 'score': 2.0173802375793457} {'_id': ObjectId('573a13b1f29313caabd36490'), 'title': "Howard Zinn: You Can't Be Neutral on a Moving Train", 'awards': {'wins': 1, 'nominations': 0, 'text': '1 win.'}, 'score': 1.446497917175293} {'_id': ObjectId('573a13c8f29313caabd78a6b'), 'title': 'Last Train Home', 'awards': {'wins': 14, 'nominations': 9, 'text': '14 wins & 9 nominations.'}, 'score': 2.8655927181243896}
要在不规范化字母大小写的情况下对结果进行排序,请在索引定义中将 normalizer
选项设置为 none
(第 7 行),保存索引定义,然后重新查询。
按 ObjectId 排序
以下查询使用范围操作符在 sample_mflix.movies
集合中的 released
字段中搜索在 2015-01-01
和 2015-12-31
之间上映的电影。它按 _id
字段对结果进行排序,该字段包含 ObjectId
类型的值,按降序排列。
db.movies.aggregate([ { "$search": { "range": { "path": "released", "gt": ISODate("2015-01-01T00:00:00.000Z"), "lt": ISODate("2015-12-31T00:00:00.000Z") }, "sort": { "_id": -1 } } }, { "$limit": 5 }, { "$project": { "_id": 1, "title": 1, "released": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: ObjectId('573a13fbf29313caabdedf31'), title: 'No Home Movie', released: ISODate('2015-08-10T00:00:00.000Z'), score: 1 }, { _id: ObjectId('573a13fbf29313caabdedf30'), title: 'Our Loved Ones', released: ISODate('2015-08-12T00:00:00.000Z'), score: 1 }, { _id: ObjectId('573a13faf29313caabded406'), title: 'The Red Spider', released: ISODate('2015-11-20T00:00:00.000Z'), score: 1 }, { _id: ObjectId('573a13faf29313caabded1d6'), title: 'The Laundryman', released: ISODate('2015-07-11T00:00:00.000Z'), score: 1 }, { _id: ObjectId('573a13faf29313caabdecaf3'), title: 'Right Now, Wrong Then', released: ISODate('2015-09-01T00:00:00.000Z'), score: 1 } ]
按 UUID 排序
以下查询在 users
集合的字段 b
中搜索术语 hello
。该查询按包含多态数据(以演示排序顺序)的字段 a
对结果进行升序排序。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "a": 1 } } }, { "$project": { "_id": 1, "a": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 3, score: 0.029335692524909973 }, { _id: 0, a: UUID('1a324de2-e34b-c87e-f2a1-42ce37ad74ed'), score: 0.029335692524909973 }, { _id: 1, a: UUID('3b241101-e2bb-4255-8caf-4136c566a962'), score: 0.029335692524909973 }, { _id: 6, a: UUID('7eeddf21-b313-4a5c-81c2-c68915daa618'), score: 0.029335692524909973 }, { _id: 4, a: UUID('d3c12e1c-c36e-25ed-7c3e-1e7f1e53c752'), score: 0.029335692524909973 }, { _id: 5, a: UUID('d73f181e-cdda-42b4-b844-4d6e172e9bc8'), score: 0.029335692524909973 }, { _id: 2, a: UUID('dee11d4e-63c6-4d90-983c-5c9f1e79e96c'), score: 0.029335692524909973 } ]
按空值排序
考虑以下查询,使用文本操作符在 b
hello
users
字段中搜索 集合中的字符串 。然后,该查询按字段c
对结果进行排序,对于集合中的某些文档,该字段包含 null 值或缺失值。
在升序排序过程中, Atlas Search默认会在结果顶部返回包含 null 或缺失值的文档,如以下示例所示:
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": 1 } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 4, c: null, score: 0.029335692524909973 }, { _id: 5, c: [], score: 0.029335692524909973 }, { _id: 6, score: 0.029335692524909973 }, { _id: 2, c: 'foo', score: 0.029335692524909973 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.029335692524909973 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.029335692524909973 }, { _id: 1, c: true, score: 0.029335692524909973 } ]
在降序排序期间, Atlas Search默认在结果底部返回包含 null 或缺失值的文档,如以下示例所示:
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": -1 } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 1, c: true, score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 2, c: 'foo', score: 0.025981096550822258 }, { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 } ]
注意
设置 noData: lowest
与默认相同。
如果您在升序排序期间将 noData
字段指定为 lowest
,则Atlas Search会在结果顶部返回包含 null 值或缺失值的文档,如以下示例所示。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": { "order": 1, "noData": "lowest" } } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 4, c: null, score: 0.029335692524909973 }, { _id: 5, c: [], score: 0.029335692524909973 }, { _id: 6, score: 0.029335692524909973 }, { _id: 2, c: 'foo', score: 0.029335692524909973 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.029335692524909973 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.029335692524909973 }, { _id: 1, c: true, score: 0.029335692524909973 } ]
如果您在降序排序期间将 noData
字段指定为 lowest
,Atlas Search在结果底部返回包含 null 值或缺失值的文档,如以下示例所示。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": { "order": -1, "noData": "lowest" } } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 1, c: true, score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 2, c: 'foo', score: 0.025981096550822258 }, { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 } ]
如果您在升序排序期间将 noData
字段指定为 highest
,则Atlas Search将在结果底部返回包含 null 值或缺失值的文档,如以下示例所示。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": { "order": 1, "noData": "highest" } } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 2, c: 'foo', score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 1, c: true, score: 0.025981096550822258 }, { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 } ]
如果您在降序排序期间将 noData
字段指定为 highest
,Atlas Search在结果顶部返回包含 null 值或缺失值的文档,如以下示例所示。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": { "order": -1, "noData": "highest" } } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 }, { _id: 1, c: true, score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 2, c: 'foo', score: 0.025981096550822258 } ]
具有 "_id": 4
、"_id": 5
和 "_id": 6
的文档的顺序是随机的,因为Atlas Search在排序时将空值和缺失值视为相等。
对多类型数组进行排序
考虑在给定另一文档且字段 中包含多类型大量的情况下,对c
users集合进行以下查询:
db.users.insertOne({ "_id": 7, "a": UUID("03e32aa9-1cbd-43b8-b9d6-18b171a03cc7"), "b": "hello", "c": [ false, null, 15 ] })
以下使用文本操作符在搜索字段b
hello
中搜索字符串 ,并按字段c
对结果进行排序。
对于升序排序, Atlas Search使用具有最低BSON类型的元素来表示多类型大量。默认下, Atlas Search将空值或缺失值视为最低BSON值。因此, Atlas Search使用 null
来表示具有 _id: 7
的文档的多类型大量,并在结果顶部返回此文档以及其他空值和缺失值。
要学习;了解更多信息,请参阅按空值和缺失值排序以及使用多种类型对数组进行排序。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": 1 } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 } { _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 }, { _id: 2, c: 'foo', score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 1, c: true, score: 0.025981096550822258 } ]
具有 "_id": 4
、"_id": 5
、"_id": 6
和 "_id": 7
的文档的顺序是随机的,因为Atlas Search在排序时将空值和缺失值视为相等。
对于降序排序, Atlas Search使用具有最高BSON类型的元素来表示多类型大量。Atlas Search使用false
来表示具有_id: 7
的文档的多类型大量,因为这是大量中最高的BSON类型。由于Atlas Search还将 true
值排在 false
值之上,因此Atlas Search在具有 _id: 1
的文档之后返回此文档。
要学习;了解更多信息,请参阅按空值和缺失值排序以及使用多种类型对数组进行排序。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": -1 } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 1, c: true, score: 0.025981096550822258 }, { _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 2, c: 'foo', score: 0.025981096550822258 } { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 }, ]
具有 "_id": 4
、"_id": 5
和 "_id": 6
的文档的顺序是随机的,因为Atlas Search在排序时将空值和缺失值视为相等。
以下查询指定noData: highest
以在排序期间将 null 值设立为最高BSON类型。
对于升序排序, Atlas Search使用具有最低BSON类型的元素来表示多类型大量。查询指定noData: highest
将空值或缺失值视为最高BSON值,因此Atlas Search使用15
表示具有_id: 7
的文档的多类型大量,因为数字是大量中下一个最低的BSON类型。
要学习;了解更多信息,请参阅按空值和缺失值排序以及使用多种类型对数组进行排序。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": { "order": 1, "noData": "highest" } } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 }, { _id: 2, c: 'foo', score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 1, c: true, score: 0.025981096550822258 }, { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 } ]
具有 "_id": 4
、"_id": 5
和 "_id": 6
的文档的顺序是随机的,因为Atlas Search在排序时将空值和缺失值视为相等。
对于降序排序, Atlas Search使用具有最高BSON类型的元素来表示多类型大量。由于查询将noData
字段指定为highest
,以将空值或缺失值设立为最高BSON值,Atlas Search使用null
表示具有_id: 7
的文档的多类型大量,并在以下位置返回此文档:结果的顶部以及其他空值和缺失值。
要学习;了解更多信息,请参阅按空值和缺失值排序以及使用多种类型对数组进行排序。
db.users.aggregate([ { "$search": { "text": { "path": "b", "query": "hello" }, "sort": { "c": { "order": -1, "noData": "highest" } } } }, { "$project": { "_id": 1, "c": 1, "score": { "$meta": "searchScore" } } } ])
[ { _id: 4, c: null, score: 0.025981096550822258 }, { _id: 5, c: [], score: 0.025981096550822258 }, { _id: 6, score: 0.025981096550822258 }, { _id: 7, c: [ false, null, 15 ], score: 0.025981096550822258 }, { _id: 1, c: true, score: 0.025981096550822258 }, { _id: 0, c: ObjectId('507f1f77bcf86cd799439011'), score: 0.025981096550822258 }, { _id: 3, c: UUID('3be11d4e-62cb-4e95-9a3c-5c9f1e56c732'), score: 0.025981096550822258 }, { _id: 2, c: 'foo', score: 0.025981096550822258 } ]
具有 "_id": 4
、"_id": 5
、"_id": 6
和 "_id": 7
的文档的顺序是随机的,因为Atlas Search在排序时将空值和缺失值视为相等。
按布尔值排序
以下查询在 sample_airbnb.listingsAndReviews
集合中搜索 Portugal
中的属性,并按 boolean
字段 is_location_exact
对结果进行降序排序。
该查询使用 $limit
阶段将输出限制为 5
个文档。它还使用 $project
阶段省略结果中除 name
、property_type
、address.country
和 address.location.is_location_exact
之外的所有字段。
1 db.listingsAndReviews.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "address.country", 6 "query": "Portugal" 7 }, 8 "sort": { 9 "address.location.is_location_exact": -1, 10 } 11 } 12 }, 13 { 14 "$limit": 5 15 }, 16 { 17 "$project": { 18 "_id": 0, 19 "name": 1, 20 "property_type": 1, 21 "address.country": 1, 22 "address.location.is_location_exact": 1 23 } 24 } 25 ])
1 [ 2 { 3 name: 'BBC OPORTO 4X2', 4 property_type: 'Apartment', 5 address: { country: 'Portugal', location: { is_location_exact: true } } 6 }, 7 { 8 name: 'Heroísmo IV', 9 property_type: 'Apartment', 10 address: { country: 'Portugal', location: { is_location_exact: true } } 11 }, 12 { 13 name: 'Spacious and well located apartment', 14 property_type: 'Apartment', 15 address: { country: 'Portugal', location: { is_location_exact: true } } 16 }, 17 { 18 name: 'Renovated Classic Design Studio with Sun Room', 19 property_type: 'Apartment', 20 address: { country: 'Portugal', location: { is_location_exact: true } } 21 }, 22 { 23 name: "O'Porto Studio | Historic Center", 24 property_type: 'Loft', 25 address: { country: 'Portugal', location: { is_location_exact: true } } 26 } 27 ]
在前面的结果中,文档的 is_location_exact
值为 true
,因为在降序排序中,Atlas Search 将 true
值排列在 false
值之上。如果通过将前面查询的第 9 行的值更改为 1
来执行升序排序,则 Atlas Search 会对 false
值高于 true
值的文档进行排名,并返回以下文档:
[ { name: 'Ribeira Charming Duplex', property_type: 'House', address: { country: 'Portugal', location: { is_location_exact: false } } }, { name: 'Be Happy in Porto', property_type: 'Loft', address: { country: 'Portugal', location: { is_location_exact: false } } }, { name: 'Downtown Oporto Inn (room cleaning)', property_type: 'Hostel', address: { country: 'Portugal', location: { is_location_exact: false } } }, { name: 'A Casa Alegre é um apartamento T1.', property_type: 'Apartment', address: { country: 'Portugal', location: { is_location_exact: false } } }, { name: 'FloresRooms 3T', property_type: 'Apartment', address: { country: 'Portugal', location: { is_location_exact: false } } } ]
复合搜索和排序
以下查询使用 $search
阶段执行以下操作:
搜索标题中含有
dance
字样的电影,优先搜索获得 2 个或更多奖项且在 1990 年 1 月 1 日之后上映的电影。按奖项数量降序对结果进行排序,然后按电影标题升序进行排序,然后按发行日期降序进行排序。
该查询使用$limit
阶段将输出限制为10
文档。 它还使用$project
阶段执行以下操作:
忽略结果中除
title
、released
和awards.wins
之外的所有字段。添加名为
score
的字段。
db.movies.aggregate([ { "$search": { "compound": { "must": [{ "text": { "path": "title", "query": "dance" } }], "should": [{ "range": { "path": "awards.wins", "gte": 2 } }, { "range": { "path": "released", "gte": ISODate("1990-01-01T00:00:00.000Z") } }] }, "sort": { "awards.wins": -1, "title": 1, "released": -1 } } }, { "$limit": 10 }, { "$project": { "_id": 0, "title": 1, "released": 1, "awards.wins": 1, "score": { "$meta": "searchScore" } } } ])
[ { title: 'Shall We Dance?', released: ISODate("1997-07-11T00:00:00.000Z"), awards: { wins: 57 }, score: 4.9811458587646484 }, { title: 'Shall We Dance?', released: ISODate("1997-07-11T00:00:00.000Z"), awards: { wins: 57 }, score: 4.9811458587646484 }, { title: 'War Dance', released: ISODate("2008-11-01T00:00:00.000Z"), awards: { wins: 11 }, score: 5.466421127319336 }, { title: 'Dance with the Devil', released: ISODate("1997-10-31T00:00:00.000Z"), awards: { wins: 6 }, score: 4.615056037902832 }, { title: 'Save the Last Dance', released: ISODate("2001-01-12T00:00:00.000Z"), awards: { wins: 6 }, score: 4.615056037902832 }, { title: 'Dance with a Stranger', released: ISODate("1985-08-09T00:00:00.000Z"), awards: { wins: 4 }, score: 3.615056037902832 }, { title: 'The Baby Dance', released: ISODate("1998-08-23T00:00:00.000Z"), awards: { wins: 4 }, score: 4.981145858764648 }, { title: 'Three-Step Dance', released: ISODate("2004-02-19T00:00:00.000Z"), awards: { wins: 4 }, score: 4.981145858764648 }, { title: "Cats Don't Dance", released: ISODate("1997-03-26T00:00:00.000Z"), awards: { wins: 3 }, score: 4.981145858764648 }, { title: 'Dance Me Outside', released: ISODate("1995-03-10T00:00:00.000Z"), awards: { wins: 3 }, score: 4.981145858764648 } ]
分面搜索和排序
以下查询使用 $search
阶段执行以下操作:
使用范围操作符搜索 2010 年 1 月 1 日至 2015 年 1 月 1 日之间发布的电影。
统计荣获
1
、5
、10
和15
奖项的电影数量。获取
2010-01-01
、2011-01-01
、2012-01-01
、2013-01-01
、2014-01-01
和2015-01-01
发行的电影数量的计数。使用
sort
选项按发布日期降序排列结果。
该查询使用$limit
阶段执行以下操作:
在
docs
输出字段中将输出限制为5
个文档。在
meta
输出字段中将输出限制为1
个文档。
它使用$project
阶段省略除awards.wins
、 released
和title
字段之外的所有字段。
它还使用$replaceWith
阶段将存储在$$SEARCH_META
变量中的元数据结果包含在meta
输出字段中,并使用$set
阶段将meta
字段添加到结果中。
db.movies.aggregate([ { "$search": { "facet": { "operator": { "range": { "path": "released", "gt": ISODate("2010-01-01T00:00:00.000Z"), "lt": ISODate("2015-01-01T00:00:00.000Z") } }, "facets": { "awardsFacet": { "type": "number", "path": "awards.wins", "boundaries" : [1,5,10,15] }, "releasedFacet" : { "type" : "date", "path" : "released", "boundaries" : [ISODate("2010-01-01T00:00:00.000Z"), ISODate("2011-01-01T00:00:00.000Z"), ISODate("2012-01-01T00:00:00.000Z"), ISODate("2013-01-01T00:00:00.000Z"), ISODate("2014-01-01T00:00:00.000Z"), ISODate("2015-01-01T00:00:00.000Z")] } } }, "sort": { "released": -1 } } }, { "$facet": { "docs": [ { "$limit": 5 }, { "$project": { "_id": 0, "title": 1, "released": 1, "awards.wins": 1 } } ], "meta": [ {"$replaceWith": "$$SEARCH_META"}, {"$limit": 1} ] } }, { "$set": { "meta": { "$arrayElemAt": ["$meta", 0] } } } ])
[ { docs: [ { title: 'Cold in July', released: ISODate("2014-12-31T00:00:00.000Z"), awards: { wins: 1 } }, { title: 'The Gambler', released: ISODate("2014-12-31T00:00:00.000Z"), awards: { wins: 7 } }, { title: 'Force Majeure', released: ISODate("2014-12-30T00:00:00.000Z"), awards: { wins: 31 } }, { title: 'LFO', released: ISODate("2014-12-27T00:00:00.000Z"), awards: { wins: 3 } }, { title: 'Peace After Marriage', released: ISODate('2014-12-26T00:00:00.000Z'), awards: { wins: 5 } } ], meta: { count: { lowerBound: Long("4821") }, facet: { releasedFacet: { buckets: [ { _id: ISODate("2010-01-01T00:00:00.000Z"), count: Long("857") }, { _id: ISODate("2011-01-01T00:00:00.000Z"), count: Long("909") }, { _id: ISODate("2012-01-01T00:00:00.000Z"), count: Long("903") }, { _id: ISODate("2013-01-01T00:00:00.000Z"), count: Long("1063") }, { _id: ISODate("2014-01-01T00:00:00.000Z"), count: Long("1089") } ] }, awardsFacet: { buckets: [ { _id: 1, count: Long("2330") }, { _id: 5, count: Long("604") }, { _id: 10, count: Long("233") } ] } } } } } ]
按分数排序
以下示例演示如何按结果中文档的分数对结果进行排序。这些示例演示了如何执行以下操作:
首先按升序对结果进行排序,以检索分数最低的文档。
按分数对结果进行降序排序,对分数相同的结果任意排序。
按分数对结果进行排序,对于具有相同分数的结果,使用唯一字段进行排序。
以下查询使用 $search
阶段执行以下操作:
搜索标题中包含“
story
”一词的电影。按分数升序对结果进行排序。
该查询使用$limit
阶段将输出限制为5
文档。 它还使用$project
阶段执行以下操作:
忽略结果中除
title
之外的所有字段。添加名为
score
的字段。
db.movies.aggregate([ { "$search": { "text": { "path": "title", "query": "story" }, "sort": {score: {$meta: "searchScore", order: 1}} } }, { "$limit": 5 }, { "$project": { "_id": 0, "title": 1, "score": {$meta: "searchScore"} } } ])
[ { title: 'Do You Believe in Miracles? The Story of the 1980 U.S. Hockey Team', score: 0.8674521446228027 }, { title: 'Once in a Lifetime: The Extraordinary Story of the New York Cosmos', score: 0.9212141036987305 }, { title: 'The Source: The Story of the Beats and the Beat Generation', score: 0.9820802211761475 }, { title: 'If These Knishes Could Talk: The Story of the NY Accent', score: 0.9820802211761475 }, { title: 'Dream Deceivers: The Story Behind James Vance vs. Judas Priest', score: 1.051558256149292 } ]
以下查询使用 $search
阶段执行以下操作:
搜索标题中包含“
summer
”一词的电影。按分数对结果进行降序排序,对分数相同的结果任意排序。
该查询使用$limit
阶段将输出限制为5
文档。 它还使用$project
阶段执行以下操作:
忽略结果中除
_id
和title
之外的所有字段。添加名为
score
的字段。
db.movies.aggregate([ { "$search": { "text": { "path": "title", "query": "summer" }, "sort": {score: {$meta: "searchScore"}} } }, { "$limit": 5 }, { "$project": { "_id": 1, "title": 1, "score": {$meta: "searchScore"} } } ])
[ { _id: ObjectId("573a1398f29313caabcea21e"), title: 'Summer', score: 3.5844719409942627 }, { _id: ObjectId("573a13a6f29313caabd18eca"), title: 'Summer Things', score: 3.000213623046875 }, { _id: ObjectId("573a13b8f29313caabd4c1d0"), title: 'Summer Palace', score: 3.000213623046875 }, { _id: ObjectId("573a1394f29313caabcde8e8"), title: 'Summer Stock', score: 3.000213623046875 }, { _id: ObjectId("573a13acf29313caabd284fa"), title: 'Wolf Summer', score: 3.000213623046875 } ]
以下查询使用 $search
阶段执行以下操作:
搜索标题中包含“
prince
”一词的电影。对于分数相同的结果,首先按分数对结果进行排序,然后按
released
字段的值按升序排序。
该查询使用$limit
阶段将输出限制为5
文档。 它还使用$project
阶段执行以下操作:
忽略结果中除
title
和released
之外的所有字段。添加名为
score
的字段。
db.movies.aggregate([ { "$search": { "text": { "path": "title", "query": "prince" }, "sort": {score: {$meta: "searchScore"}, "released": 1} } }, { "$limit": 5 }, { "$project": { "_id": 0, "title": 1, "released": 1, "score": {$meta: "searchScore"} } } ])
[ { title: 'Prince', released: ISODate("2015-08-14T00:00:00.000Z"), score: 4.168826103210449 }, { title: 'Prince Avalanche', released: ISODate("2013-09-19T00:00:00.000Z"), score: 3.4893198013305664 }, { title: 'The Prince', released: ISODate("2014-08-22T00:00:00.000Z"), score: 3.4893198013305664 }, { title: 'Prince of Foxes', released: ISODate("1949-12-23T00:00:00.000Z"), score: 3.0002830028533936 }, { title: 'The Oil Prince', released: ISODate("1966-01-01T00:00:00.000Z"), score: 3.0002830028533936 } ]