Menu Docs
Página inicial do Docs
/ /

Assistente inteligente no Data Explorer

O assistente inteligente é uma ferramenta alimentada por IA projetada para suporte ao desenvolvimento integrado do MongoDB no Data Explorer. Ele responde a perguntas de linguagem natural, ajuda na depuração de erros e fornece orientações para otimização do desempenho.

Observação

O assistente inteligente está atualmente em pré-visualização pública.

Para usar o assistente inteligente no Data Explorer, primeiro ative os recursos de IA nas configurações.

No nível organizacional:

1
  1. Se ainda não estiver exibido, selecione sua organização desejada no Menu Organizations na barra de navegação.

  2. Na barra lateral, clique em Organization Settings.

A página Configurações da organização é exibida.

2

No nível do projeto :

1
  1. Se ainda não tiver sido exibido, selecione a organização que contém seu projeto no menu Organizations na barra de navegação.

  2. Se ainda não estiver exibido, selecione o projeto desejado no menu Projects na barra de navegação.

  3. Na barra lateral, clique em Project Settings.

A página Configurações do projeto é exibida.

2

Defina a alternância Enable Data Explorer Generative AI Features para on.

3

Para obter mais informações sobre o uso de IA generativa no Data Explorer, consulte:

  • Informações sobre IA e uso de dados

  • Perguntas frequentes sobre os recursos de IA generativa do MongoDB

Para acessar o assistente inteligente:

1
  1. Se ainda não tiver sido exibido, selecione a organização que contém seu projeto no menu Organizations na barra de navegação.

  2. Se ainda não estiver exibido, selecione seu projeto no menu Projects na barra de navegação.

  3. Na barra lateral, clique em Data Explorer sob o título Database.

    O Data Explorer é exibido.

Observação

Você também pode ir para a página Clusters e clicar em Data Explorer sob o título Shortcuts.

Página do Data Explorer com Gaveta de IA recolhida
clique para ampliar

figura 1. Página inicial do Data Explorer com o assistente recolhido.

Data ExplorerPage com Gaveta de IA aberta
clique para ampliar

figura 2. A página inicial do Data Explorer com o assistente expandido.

Os cenários a seguir mostram vários usos do assistente inteligente no Data Explorer.

peça ao assistente inteligente para analisar a saída de sua consulta do MongoDB Compass :

Interpret this explain plan for me.
## Summary
- **Query Logic:** This pipeline counts the number of Italian restaurants in Manhattan by first filtering documents and then aggregating the count.
- **Performance:** Fair
- **Recommendations:** Create a compound index on `{ borough: 1, cuisine: 1 }` to optimize document retrieval.
## Details
### Query Logic
1. `$match`: Filters documents where `borough` is "Manhattan" and `cuisine` is "Italian".
2. `$count`: Counts the number of documents matching the filter and outputs the total.
### Performance Analysis
- The winning plan uses an index scan on the `cuisine` field (`cuisine_1`) and applies an in-memory filter for `borough` ("Manhattan").
- Both `totalKeysExamined` and `totalDocsExamined` are high (43,207), which implies that every document with `cuisine: "Italian"` is examined and then filtered by `borough`.
- No compound index exists, meaning MongoDB cannot efficiently combine both filter criteria in a single index lookup.
- The pipeline does properly filter before counting, but index usage is only partial, causing increased resource usage.
### Recommendations
- Create a compound index on `{ borough: 1, cuisine: 1 }` to allow MongoDB to retrieve documents matching both criteria directly from the index, minimizing documents examined.
- This optimization will reduce execution time and system load without changing the output of your aggregation pipeline.
Below is the recommended Aggregation Pipeline. This optimized Aggregation Pipeline will leverage the compound index to scan fewer documents, as both filter criteria are present in the index.
```json
[
{ "$match": { "borough": "Manhattan", "cuisine": "Italian" } },
{ "$count": "totalItalianRestaurants" }
]
```
### Follow-Up Questions
1. How do I create a compound index in MongoDB Compass or via a shell command?
2. What other fields should I consider adding to my indexes for restaurant lookups?
3. How can I further optimize aggregations when working with larger datasets?

Os exemplos seguintes demonstram perguntas que você pode fazer ao assistente inteligente sobre funções e queries do Data Explorer .

How is MongoDB data modeling different from data modeling with a relational
database?
MongoDB data modeling differs from relational database (RDBMS) data
modeling in some important ways:
1. Document-Oriented vs. Table-Oriented
- MongoDB stores data as flexible, hierarchical JSON-like documents.
- Relational databases use tables with fixed schemas and columns.
2. Schema Flexibility
- In MongoDB, collections can contain documents with different structures. Schema enforcement is optional.
- RDBMS tables have a strict schema that enforces data types and relationships.
3. Embedding vs. Normalization
- MongoDB encourages embedding related data inside documents when appropriate (denormalization). Example: An order document may include an array of items directly inside it.
- Relational databases emphasize normalization—splitting data across tables connected by foreign keys.
4. Relationships
- MongoDB does support references between documents (similar to foreign keys), but joins are less central and not as efficient as in RDBMS.
- RDBMSs use normalized data and JOIN operations to relate tables efficiently.
5. Performance & Scaling
- MongoDB’s data model enables horizontal scaling (sharding), making it well-suited for large, distributed datasets.
- RDBMS scaling typically relies on vertical scaling or complex clustering; JOINs can become expensive as data grows.
6. Use Cases and Design Philosophy
- MongoDB models are often designed to optimize common query patterns, reducing the need for joins and complex queries.
- RDBMS models are designed for transactional consistency and for representing organized, well-structured relationships.
In summary, MongoDB encourages a more flexible, application-driven
approach to modeling, while relational databases rely on rigid schemas
and normalized relationships. Compass provides tools to visually explore
your document structures and relationships, which can be especially
helpful as your model evolves.
How can I combine multiple conditions in a single $search query?
To combine multiple conditions in a single $search query in MongoDB Atlas
Search (including Compass), you should use the compound operator. The
compound operator allows you to specify multiple criteria using must,
mustNot, filter, and should clauses.
Example: Combine Multiple Conditions
Suppose you want to:
- Match documents where the plot field contains "baseball"
- Exclude documents where the genres field contains "Comedy" or "Romance"
Your $search stage would look like this:
{
"$search": {
"compound": {
"must": [
{
"text": {
"query": "baseball",
"path": "plot"
}
}
],
"mustNot": [
{
"text": {
"query": ["Comedy", "Romance"],
"path": "genres"
}
}
]
}
}
}

Voltar

Agregação de solicitação

Nesta página