Docs 菜单
Docs 主页
/
Atlas
/ / / /

geoWithin

在此页面上

  • 定义
  • 语法
  • 选项
  • 示例
  • box 例子
  • circle 例子
  • geometry 示例
geoWithin

geoWithin 操作符支持查询给定几何图形内的地理点。即使 indexShapes 值在 索引定义中为 true,也仅返回点。

您可以在以下位置查询点:

  • 圆形

  • 边界框

  • 多边形

指定要搜索的坐标时,必须先指定经度,然后指定纬度。 经度值可以介于-180180之间,两者均包括在内。 纬度值可以介于-9090之间,两者均包括在内。 坐标值可以是整数或双精度值。

注意

Atlas Search 不支持以下内容:

  • 非默认坐标参考系 (CRS)

  • 平面 XY 坐标系(二维)

  • 坐标对 点表示法(即pointFieldName: [12, 34]

geoWithin 通过以下语法实现:

{
"$search": {
"index": <index name>, // optional, defaults to "default"
"geoWithin": {
"path": "<field-to-search>",
"box | circle | geometry": <object>,
"score": <score-options>
}
}
}

geoWithin 使用以下词条来构造查询:

字段
类型
说明
必要性

box

对象

指定搜索框左下角和右上角 GeoJSON 点的对象。该对象接受以下字段:

  • bottomLeft - GeoJSON 左下角点。

  • topRight - 右上角的 GeoJSON点。

要了解如何在 GeoJSON 对象中指定 GeoJSON 数据,请参阅GeoJSON 对象。

boxcirclegeometry是必需的。

视条件而定

circle

对象

对象,用于指定Atlas Search的中心点和半径(以米为单位)。 该对象包含以下GeoJSON字段:

  • center - 指定为 GeoJSON 的圆心。

  • radius - Radius(半径)是一个数字,以米为单位。 值必须大于或等于0

要了解如何在 GeoJSON 对象中指定 GeoJSON 数据,请参阅GeoJSON 对象。

circleboxgeometry是必需的。

视条件而定

geometry

GeoJSON 对象

GeoJSON对象,用于指定要在其中进行 的 MultiPolygon Polygon Atlas Search。必须将多边形指定为闭环,其中最后一个位置与第一个位置相同。

计算地理空间结果时, Atlas Search geoShape geoWithin 操作符以及MongoDB $geoIntersects操作符使用不同的几何图形。从Atlas Search和MongoDB绘制多边形边的方式可以看出这种差异。

Atlas Search 根据 笛卡尔距离 绘制多边形 ,这是坐标参考系中两点之间的最短直线。

MongoDB使用基于2 dsphere 索引的测地线模式绘制多边形,该索引构建在测地线类型第三方库之上,或者使用来自2 d 索引的平面模式绘制多边形。要学习;了解详情,请参阅GeoJSON对象。

对于涉及多边形的地理空间查询,Atlas Search 和 MongoDB 可能会返回不同的结果。

要了解如何在 GeoJSON 对象中指定 GeoJSON 数据,请参阅GeoJSON 对象。

geometryboxcircle是必需的。

视条件而定

path

字符串或字符串数组

要搜索的一个或多个索引地理类型字段。

score

对象

分配给匹配搜索结果的分数。 默认情况下,结果中的分数1 。 您可以使用以下选项修改分数:

  • boost将生成的分数乘以给定数字。

  • constant将结果分数替换为给定数字。

  • function:使用给定的表达式替换结果分数。

有关在查询中使用 score 的信息,请参阅对结果中的文档进行评分

no

listingsAndReviewssample_airbnb以下示例使用数据库中的collection集合。如果集群上有样本数据集,则可以为地理类型创建自定义 Atlas Search 索引,并在集群上运行示例查询。

address.locationlistingsAndReviews使用以下示例索引定义为collection中的字段编制索引:

1{
2 "mappings": {
3 "fields": {
4 "address": {
5 "fields": {
6 "location": {
7 "type": "geo"
8 }
9 },
10 "type": "document"
11 },
12 "property_type": {
13 "type": "stringFacet"
14 }
15 }
16 }
17}

以下查询使用geoWithin操作符和box字段在澳大利亚的边界框中搜索属性。

查询包括:

  • $limit 阶段将输出限制为 3 个结果。

  • $project 阶段排除 nameaddress 以外的所有字段。

注意

您无需在 Atlas Search 搜索查询中指定名为default的索引。如果索引有任何其他名称,则必须指定index字段。

以下查询返回与指定搜索条件匹配的文档。

1db.listingsAndReviews.aggregate([
2 {
3 "$search": {
4 "geoWithin": {
5 "path": "address.location",
6 "box": {
7 "bottomLeft": {
8 "type": "Point",
9 "coordinates": [112.467, -55.050]
10 },
11 "topRight": {
12 "type": "Point",
13 "coordinates": [168.000, -9.133]
14 }
15 }
16 }
17 }
18 },
19 {
20 $limit: 3
21 },
22 {
23 $project: {
24 "_id": 0,
25 "name": 1,
26 "address": 1
27 }
28 }
29])
{
"name" : "Surry Hills Studio - Your Perfect Base in Sydney",
"address" : {
"street" : "Surry Hills, NSW, Australia",
"suburb" : "Darlinghurst",
"government_area" : "Sydney",
"market" : "Sydney",
"country" : "Australia",
"country_code" : "AU",
"location" : {
"type" : "Point",
"coordinates" : [ 151.21554, -33.88029 ],
"is_location_exact" : true
}
}
}
{
"name" : "Sydney Hyde Park City Apartment (checkin from 6am)",
"address" : {
"street" : "Darlinghurst, NSW, Australia",
"suburb" : "Darlinghurst",
"government_area" : "Sydney",
"market" : "Sydney",
"country" : "Australia",
"country_code" : "AU",
"location" : {
"type" : "Point",
"coordinates" : [ 151.21346, -33.87603 ],
"is_location_exact" : false
}
}
}
{
"name" : "THE Place to See Sydney's FIREWORKS",
"address" : {
"street" : "Rozelle, NSW, Australia",
"suburb" : "Lilyfield/Rozelle",
"government_area" : "Leichhardt",
"market" : "Sydney",
"country" : "Australia",
"country_code" : "AU",
"location" : {
"type" : "Point",
"coordinates" : [ 151.17956, -33.86296 ],
"is_location_exact" : true
}
}
}

以下查询返回指定搜索条件的属性类型(例如公寓、独立屋等)的数量。

1db.listingsAndReviews.aggregate([
2 {
3 "$searchMeta": {
4 "facet": {
5 "operator": {
6 "geoWithin": {
7 "path": "address.location",
8 "box": {
9 "bottomLeft": {
10 "type": "Point",
11 "coordinates": [112.467, -55.050]
12 },
13 "topRight": {
14 "type": "Point",
15 "coordinates": [168.000, -9.133]
16 }
17 }
18 }
19 },
20 "facets": {
21 "propertyTypeFacet": {
22 "type": "string",
23 "path": "property_type"
24 }
25 }
26 }
27 }
28 }
29])
[
{
count: { lowerBound: Long('610') },
facet: {
propertyTypeFacet: {
buckets: [
{ _id: 'Apartment', count: Long('334') },
{ _id: 'House', count: Long('168') },
{ _id: 'Townhouse', count: Long('29') },
{ _id: 'Guest suite', count: Long('20') },
{ _id: 'Condominium', count: Long('11') },
{ _id: 'Cabin', count: Long('8') },
{ _id: 'Serviced apartment', count: Long('7') },
{ _id: 'Villa', count: Long('7') },
{ _id: 'Bungalow', count: Long('5') },
{ _id: 'Guesthouse', count: Long('5') }
]
}
}
}
]

以下查询使用geoWithin操作符和circle字段搜索加拿大指定坐标一英里半径范围内的房产。

查询包括:

  • $limit 阶段将输出限制为 3 个结果。

  • $project 阶段排除 nameaddress 以外的所有字段。

注意

您无需在 Atlas Search 搜索查询中指定名为default的索引。如果索引有任何其他名称,则必须指定index字段。

1db.listingsAndReviews.aggregate([
2 {
3 "$search": {
4 "geoWithin": {
5 "circle": {
6 "center": {
7 "type": "Point",
8 "coordinates": [-73.54, 45.54]
9 },
10 "radius": 1600
11 },
12 "path": "address.location"
13 }
14 }
15 },
16 {
17 $limit: 3
18 },
19 {
20 $project: {
21 "_id": 0,
22 "name": 1,
23 "address": 1
24 }
25 }
26])
{
"name" : "Ligne verte - à 15 min de métro du centre ville.",
"address" : {
"street" : "Montréal, Québec, Canada",
"suburb" : "Hochelaga-Maisonneuve",
"government_area" : "Mercier-Hochelaga-Maisonneuve",
"market" : "Montreal",
"country" : "Canada",
"country_code" : "CA",
"location" : {
"type" : "Point",
"coordinates" : [ -73.54949, 45.54548 ],
"is_location_exact" : false
}
}
}
{
"name" : "Belle chambre à côté Metro Papineau",
"address" : {
"street" : "Montréal, QC, Canada",
"suburb" : "Gay Village",
"government_area" : "Ville-Marie",
"market" : "Montreal",
"country" : "Canada",
"country_code" : "CA",
"location" : {
"type" : "Point",
"coordinates" : [ -73.54985, 45.52797 ],
"is_location_exact" : false
}
}
}
{
"name" : "L'IDÉAL, ( à 2 min du métro Pie-IX ).",
"address" : {
"street" : "Montréal, Québec, Canada",
"suburb" : "Mercier-Hochelaga-Maisonneuve",
"government_area" : "Mercier-Hochelaga-Maisonneuve",
"market" : "Montreal",
"country" : "Canada",
"country_code" : "CA",
"location" : {
"type" : "Point",
"coordinates" : [ -73.55208, 45.55157 ],
"is_location_exact" : true
}
}
}

以下示例使用 geoWithin 操作符和 geometry 字段搜索夏威夷州的房产。type 字段指定区域是 GeoJSON 多边形还是多边形集合。

查询包括:

  • $limit 阶段将输出限制为 3 个结果。

  • $project 阶段排除 nameaddress 以外的所有字段。

注意

您无需在 Atlas Search 搜索查询中指定名为default的索引。如果索引有任何其他名称,则必须指定index字段。


➤ 使用本页的“选择语言”下拉菜单设置本节示例的语言。


以下 Atlas Search 搜索查询:

  • 使用复合$search阶段可以:

    • 指定结果must Polygon位于由 集定义的coordinates 内。

    • 优先显示condominium类型属性的结果。

  • 使用 $project 阶段以:

    • 排除除nameaddressproperty_type之外的所有字段。

    • 为每个返回的文档添加相关性score

[
{
"$search": {
"index": "<INDEX-NAME>",
"compound": {
"must": [{
"geoWithin": {
"geometry": {
"type": "Polygon",
"coordinates": [[[ -161.323242, 22.512557 ],
[ -152.446289, 22.065278 ],
[ -156.09375, 17.811456 ],
[ -161.323242, 22.512557 ]]]
},
"path": "address.location"
}
}],
"should": [{
"text": {
"path": "property_type",
"query": "Condominium"
}
}]
}
}
}
]
1SCORE: 2.238388776779175 _id: "1001265"
2listing_url: "https://www.airbnb.com/rooms/1001265"
3name: "Ocean View Waikiki Marina w/prkg"
4summary: "A short distance from Honolulu's billion dollar mall,
5and the same dis…"
6...
7property_type: "Condominium"
8...
9address: Object
10 street: "Honolulu, HI, United States"
11 suburb: "Oʻahu"
12 government_area: "Primary Urban Center"
13 market: "Oahu"
14 country: "United States"
15 country_code: "US"
16 location: Object
17 type: "Point"
18 coordinates: Array
19 0: -157.83919
20 1: 21.28634
21 is_location_exact: true
22...
23
24SCORE: 2.238388776779175 _id: "10227000"
25listing_url: "https://www.airbnb.com/rooms/10227000"
26name: "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!"
27summary: "THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIF…"
28...
29property_type: "Condominium"
30...
31address: Object
32 street: "Lahaina, HI, United States"
33 suburb: "Maui"
34 government_area: "Lahaina"
35 market: "Maui"
36 country: "United States"
37 country_code: "US"
38 location: Object
39 type: "Point"
40 coordinates: Array
41 0: -156.68012
42 1: 20.96996
43 is_location_exact: true
44...
45
46SCORE: 2.238388776779175 _id: "10266175"
47listing_url: "https://www.airbnb.com/rooms/10266175"
48name: "Makaha Valley Paradise with OceanView"
49summary: "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha …"
50...
51property_type: "Condominium"
52...
53address: Object
54 street: "Waianae, HI, United States"
55 suburb: "Leeward Side"
56 government_area: "Waianae"
57 market: "Oahu"
58 country: "United States"
59 country_code: "US"
60 location: Object
61 type: "Point"
62 coordinates: Array
63 0: -158.20291
64 1: 21.4818
65 is_location_exact: true
66...
67
68SCORE: 2.238388776779175 _id: "1042446"
69listing_url: "https://www.airbnb.com/rooms/1042446"
70name: "March 2019 availability! Oceanview on Sugar Beach!"
71summary: ""
72...
73property_type: "Condominium"
74...
75address: Object
76 street: "Kihei, HI, United States"
77 suburb: "Maui"
78 government_area: "Kihei-Makena"
79 market: "Maui"
80 country: "United States"
81 country_code: "US"
82 location: Object
83 type: "Point"
84 coordinates: Array
85 0: -156.46881
86 1: 20.78621
87 is_location_exact: true
88...
89
90SCORE: 2.238388776779175 _id: "10527243"
91listing_url: "https://www.airbnb.com/rooms/10527243"
92name: "Tropical Jungle Oasis"
93summary: "2 bedrooms, one with a queen sized bed, one with 2 single beds. 1 and …"
94...
95property_type: "Condominium"
96...
97address: Object
98 street: "Hilo, HI, United States"
99 suburb: "Island of Hawaiʻi"
100 government_area: "South Hilo"
101 market: "The Big Island"
102 country: "United States"
103 country_code: "US"
104 location: Object
105 type: "Point"
106 coordinates: Array
107 0: -155.09259
108 1: 19.73108
109 is_location_exact: true
110...
111
112SCORE: 2.238388776779175 _id: "1104768"
113listing_url: "https://www.airbnb.com/rooms/1104768"
114name: "2 Bdrm/2 Bath Family Suite Ocean View"
115summary: "This breathtaking 180 degree view of Waikiki is one of a kind. You wil…"
116...
117property_type: "Condominium"
118...
119address: Object
120 street: "Honolulu, HI, United States"
121 suburb: "Waikiki"
122 government_area: "Primary Urban Center"
123 market: "Oahu"
124 country: "United States"
125 country_code: "US"
126 location: Object
127 type: "Point"
128 coordinates: Array
129 0: -157.82696
130 1: 21.27971
131 is_location_exact: true
132...
133
134SCORE: 2.238388776779175 _id: "11207193"
135listing_url: "https://www.airbnb.com/rooms/11207193"
136name: "302 Kanai A Nalu Ocean front/view"
137summary: "Welcome to Kana'i A Nalu a quiet resort that sits on the ocean away fr…"
138...
139property_type: "Condominium"
140...
141address: Object
142 street: "Wailuku, HI, United States"
143 suburb: "Maui"
144 government_area: "Kihei-Makena"
145 market: "Maui"
146 country: "United States"
147 country_code: "US"
148 location: Object
149 type: "Point"
150 coordinates: Array
151 0: -156.5039
152 1: 20.79664
153 is_location_exact: true
154...
155
156SCORE: 2.238388776779175 _id: "11319047"
157listing_url: "https://www.airbnb.com/rooms/11319047"
158name: "Sugar Beach Resort 1BR Ground Floor Condo !"
159summary: "The Sugar Beach Resort enjoys a beachfront setting fit for a postcard."
160...
161property_type: "Condominium"
162...
163address: Object
164 street: "Kihei, HI, United States"
165 suburb: "Maui"
166 government_area: "Kihei-Makena"
167 market: "Maui"
168 country: "United States"
169 country_code: "US"
170 location: Object
171 type: "Point"
172 coordinates: Array
173 0: -156.46697
174 1: 20.78484
175 is_location_exact: true
176...
177
178SCORE: 2.238388776779175 _id: "11695887"
179listing_url: "https://www.airbnb.com/rooms/11695887"
180name: "2 BR Oceanview - Great Location!"
181summary: "Location, location, location... This is a great 2 bed, 2 bath condo is…"
182...
183property_type: "Condominium"
184...
185address: Object
186 street: "Kihei, HI, United States"
187 suburb: "Kihei/Wailea"
188 government_area: "Kihei-Makena"
189 market: "Maui"
190 country: "United States"
191 country_code: "US"
192 location: Object
193 type: "Point"
194 coordinates: Array
195 0: -156.44917
196 1: 20.73013
197 is_location_exact: true
198...
199
200SCORE: 2.238388776779175 _id: "11817249"
201listing_url: "https://www.airbnb.com/rooms/11817249"
202name: "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC"
203summary: "Book with confidence this stunning 2 bedroom, 2 bathroom condo at the …"
204...
205property_type: "Condominium"
206...
207address: Object
208 street: "Kihei, HI, United States"
209 suburb: "Maui"
210 government_area: "Kihei-Makena"
211 market: "Maui"
212 country: "United States"
213 country_code: "US"
214 location: Object
215 type: "Point"
216 coordinates: Array
217 0: -156.4409
218 1: 20.69735
219 is_location_exact: true
220...
db.listingsAndReviews.aggregate([
{
"$search": {
"index": "<INDEX-NAME>",
"compound": {
"must": [{
"geoWithin": {
"geometry": {
"type": "Polygon",
"coordinates": [[[ -161.323242, 22.512557 ],
[ -152.446289, 22.065278 ],
[ -156.09375, 17.811456 ],
[ -161.323242, 22.512557 ]]]
},
"path": "address.location"
}
}],
"should": [{
"text": {
"path": "property_type",
"query": "Condominium"
}
}]
}
}
},
{
"$limit": 10
},
{
$project: {
"_id": 0,
"name": 1,
"address": 1,
"property_type": 1,
score: { $meta: "searchScore" }
}
}
])
<<<<<<<< HEAD:source/includes/fts/geo/procedures/steps-fts-tutorial-run-geo-query-compass.yaml
stepnum: 1
title: "Connect to your cluster in |compass|."
ref: connect-to-database-deployment-fts-compass
content: |
Open |compass| and
connect to your {+cluster+}. For detailed instructions on connecting,
see :ref:`atlas-connect-via-compass`.
---
stepnum: 2
title: "Use the ``listingsAndReviews`` collection in the ``sample_airbnb`` database."
ref: use-sample-airbnb-compass
content: |
On the :guilabel:`Database` screen, click the ``sample_airbnb``
database, then click the ``listingsAndReviews`` collection.
---
stepnum: 3
title: "Run an |fts| query on the ``listingsAndReviews`` collection."
ref: run-geo-query-compass
content: |
The following query:
.. include:: /includes/fts/facts/fact-fts-tutorial-run-geo-query-results.rst
To run this |fts| query in |compass|:
a. Click the :guilabel:`Aggregations` tab.
#. Click :guilabel:`Select...`, then configure each of the following
pipeline stages by selecting the stage from the dropdown and adding
the query for that stage. Click :guilabel:`Add Stage` to add
additional stages.
.. list-table::
:header-rows: 1
:widths: 25 75
* - Pipeline Stage
- Query
* - ``$search``
- .. code-block:: javascript
{
'index': 'geo-json-tutorial',
'compound': {
'must': [
{
'geoWithin': {
'geometry': {
'type': 'Polygon',
'coordinates': [
[
[
-161.323242, 22.512557
], [
-152.446289, 22.065278
], [
-156.09375, 17.811456
], [
-161.323242, 22.512557
]
]
]
},
'path': 'address.location'
}
}
],
'should': [
{
'text': {
'path': 'property_type',
'query': 'Condominium'
}
}
]
}
}
* - ``$limit``
- .. code-block:: javascript
10
* - ``$project``
- .. code-block:: javascript
{
'_id': 0,
'name': 1,
'address': 1,
'property_type': 1,
'score': {
'$meta': 'searchScore'
}
}
If you enabled :guilabel:`Auto Preview`, |compass| displays the
following documents next to the ``$project``
pipeline stage:
.. code-block:: json
:copyable: false
:linenos:
{
========
[
{
>>>>>>>> 44b896764 (DOCSP-47238 Performance Options reference section + tutorial example migration):source/includes/fts/geo/shell-query-output.js
name: 'Ocean View Waikiki Marina w/prkg',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Oʻahu',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.83919, 21.28634 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!',
property_type: 'Condominium',
address: {
street: 'Lahaina, HI, United States',
suburb: 'Maui',
government_area: 'Lahaina',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.68012, 20.96996 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Makaha Valley Paradise with OceanView',
property_type: 'Condominium',
address: {
street: 'Waianae, HI, United States',
suburb: 'Leeward Side',
government_area: 'Waianae',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -158.20291, 21.4818 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'March 2019 availability! Oceanview on Sugar Beach!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46881, 20.78621 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Tropical Jungle Oasis',
property_type: 'Condominium',
address: {
street: 'Hilo, HI, United States',
suburb: 'Island of Hawaiʻi',
government_area: 'South Hilo',
market: 'The Big Island',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -155.09259, 19.73108 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 Bdrm/2 Bath Family Suite Ocean View',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Waikiki',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.82696, 21.27971 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '302 Kanai A Nalu Ocean front/view',
property_type: 'Condominium',
address: {
street: 'Wailuku, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.5039, 20.79664 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Sugar Beach Resort 1BR Ground Floor Condo !',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46697, 20.78484 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 BR Oceanview - Great Location!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Kihei/Wailea',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.44917, 20.73013 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.4409, 20.69735 ],
is_location_exact: true
}
},
score: 2.238388776779175
}
]

要学习;了解如何在MongoDB Compass中运行以下查询,请参阅定义查询。

1using MongoDB.Bson;
2using MongoDB.Bson.IO;
3using MongoDB.Bson.Serialization;
4using MongoDB.Bson.Serialization.Attributes;
5using MongoDB.Bson.Serialization.Conventions;
6using MongoDB.Driver;
7using MongoDB.Driver.GeoJsonObjectModel;
8using MongoDB.Driver.Search;
9using System;
10
11public class GeoQuery
12{
13 private const string MongoConnectionString = "<connection-string>";
14
15 public static void Main(string[] args)
16 {
17 // allow automapping of the camelCase database fields to our AirbnbDocument
18 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
19 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
20
21 // connect to your Atlas cluster
22 var mongoClient = new MongoClient(MongoConnectionString);
23 var airbnbDatabase = mongoClient.GetDatabase("sample_airbnb");
24 var airbnbCollection = airbnbDatabase.GetCollection<AirbnbDocument>("listingsAndReviews");
25
26 // declare data for the compound query
27 string property_type = "Condominium";
28 var coordinates = new GeoJson2DCoordinates[]
29 {
30 new(-161.323242, 22.512557),
31 new(-152.446289, 22.065278),
32 new(-156.09375, 17.811456),
33 new(-161.323242, 22.512557)
34 };
35 var polygon = GeoJson.Polygon(coordinates);
36
37 // define and run pipeline
38 var results = airbnbCollection.Aggregate()
39 .Search(Builders<AirbnbDocument>.Search.Compound()
40 .Must(Builders<AirbnbDocument>.Search.GeoWithin(airbnb => airbnb.Address.Location, polygon))
41 .Should((Builders<AirbnbDocument>.Search.Text(airbnb => airbnb.PropertyType, property_type))),
42 indexName: "<INDEX-NAME>")
43 .Limit (10)
44 .Project<AirbnbDocument>(Builders<AirbnbDocument>.Projection
45 .Include(airbnb => airbnb.PropertyType)
46 .Include(airbnb => airbnb.Address.Location)
47 .Include(airbnb => airbnb.Name)
48 .Exclude(airbnb => airbnb.Id)
49 .MetaSearchScore(airbnb => airbnb.Score))
50 .ToList();
51
52 // print results
53 foreach (var x in results) {
54 Console.WriteLine(x.ToJson());
55 }
56 }
57}
58[BsonIgnoreExtraElements]
59public class AirbnbDocument
60{
61 [BsonIgnoreIfDefault]
62 public ObjectId Id { get; set; }
63 public String Name { get; set; }
64 [BsonElement("property_type")]
65 public string PropertyType { get; set; }
66 public Address Address { get; set; }
67 public double Score { get; set; }
68}
69[BsonIgnoreExtraElements]
70public class Address
71{
72 public GeoJsonPoint<GeoJson2DCoordinates> Location { get; set; }
73}
{
"name" : "Ocean View Waikiki Marina w/prkg",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-157.83919, 21.286339999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.68011999999999, 20.96996],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Makaha Valley Paradise with OceanView",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-158.20291, 21.4818],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "March 2019 availability! Oceanview on Sugar Beach!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.46880999999999, 20.786210000000001],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Tropical Jungle Oasis",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-155.09259, 19.731079999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "2 Bdrm/2 Bath Family Suite Ocean View",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-157.82696000000001, 21.279710000000001],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "302 Kanai A Nalu Ocean front/view",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.50389999999999, 20.79664],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Sugar Beach Resort 1BR Ground Floor Condo !",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.46697, 20.784839999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "2 BR Oceanview - Great Location!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.44917000000001, 20.730129999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.4409, 20.69735],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/v2/bson"
8 "go.mongodb.org/mongo-driver/v2/mongo"
9 "go.mongodb.org/mongo-driver/v2/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("sample_airbnb").Collection("listingsAndReviews")
22
23 // define polygon
24 polygon := [][][]float64{{
25 {-161.323242, 22.512557},
26 {-152.446289, 22.065278},
27 {-156.09375, 17.811456},
28 {-161.323242, 22.512557},
29 }}
30
31 // define pipeline
32 searchStage := bson.D{{"$search", bson.M{
33 "index": "<INDEX-NAME>",
34 "compound": bson.M{
35 "must": bson.M{
36 "geoWithin": bson.M{
37 "geometry": bson.M{
38 "type": "Polygon",
39 "coordinates": polygon,
40 },
41 "path": "address.location",
42 },
43 },
44 "should": bson.M{
45 "text": bson.M{
46 "path": "property_type",
47 "query": "Condominium",
48 }},
49 },
50 },
51 }}
52 limitStage := bson.D{{"$limit", 10}}
53 projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"address", 1}, {"property_type", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
54
55 // run pipeline
56 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
57 if err != nil {
58 panic(err)
59 }
60
61 // print results
62 var results []bson.D
63 if err = cursor.All(context.TODO(), &results); err != nil {
64 panic(err)
65 }
66 for _, result := range results {
67 fmt.Println(result)
68 }
69}
package main
import (
"context"
"fmt"
"go.mongodb.org/mongo-driver/v2/bson"
"go.mongodb.org/mongo-driver/v2/mongo"
"go.mongodb.org/mongo-driver/v2/mongo/options"
)
func main() {
// connect to your Atlas cluster
client, err := mongo.Connect(options.Client().ApplyURI("<connection-string>"))
if err != nil {
panic(err)
}
defer client.Disconnect(context.TODO())
// set namespace
collection := client.Database("sample_airbnb").Collection("listingsAndReviews")
// define polygon
polygon := [][][]float64{{
{-161.323242, 22.512557},
{-152.446289, 22.065278},
{-156.09375, 17.811456},
{-161.323242, 22.512557},
}}
// define pipeline
searchStage := bson.D{{"$search", bson.M{
"index": "<INDEX-NAME>",
"compound": bson.M{
"must": bson.M{
"geoWithin": bson.M{
"geometry": bson.M{
"type": "Polygon",
"coordinates": polygon,
},
"path": "address.location",
},
},
"should": bson.M{
"text": bson.M{
"path": "property_type",
"query": "Condominium",
}},
},
},
}}
limitStage := bson.D{{"$limit", 10}}
projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"address", 1}, {"property_type", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
// run pipeline
cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
if err != nil {
panic(err)
}
// print results
var results []bson.D
if err = cursor.All(context.TODO(), &results); err != nil {
panic(err)
}
for _, result := range results {
fmt.Println(result)
}
}
1import java.util.Arrays;
2import static com.mongodb.client.model.Filters.eq;
3import static com.mongodb.client.model.Aggregates.limit;
4import static com.mongodb.client.model.Aggregates.project;
5import static com.mongodb.client.model.Projections.computed;
6import static com.mongodb.client.model.Projections.excludeId;
7import static com.mongodb.client.model.Projections.fields;
8import static com.mongodb.client.model.Projections.include;
9import com.mongodb.client.MongoClient;
10import com.mongodb.client.MongoClients;
11import com.mongodb.client.MongoCollection;
12import com.mongodb.client.MongoDatabase;
13import org.bson.Document;
14
15public class GeoQuery {
16 public static void main( String[] args ) {
17 Document agg = new Document( "$search",
18 new Document( "index", "<INDEX-NAME>")
19 .append("compound",
20 new Document("must", Arrays.asList(new Document("geoWithin",
21 new Document("geometry",
22 new Document("type", "Polygon")
23 .append("coordinates", Arrays.asList(Arrays.asList(Arrays.asList(-161.323242d, 22.512557d), Arrays.asList(-152.446289d, 22.065278d), Arrays.asList(-156.09375d, 17.811456d), Arrays.asList(-161.323242d, 22.512557d)))))
24 .append("path", "address.location"))))
25 .append("should", Arrays.asList(new Document("text",
26 new Document("path", "property_type")
27 .append("query", "Condominium"))))));
28
29 String uri = "<connection-string>";
30
31 try (MongoClient mongoClient = MongoClients.create(uri)) {
32 MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
33 MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
34
35 collection.aggregate(Arrays.asList(agg,
36 limit(10),
37 project(fields(excludeId(), include("name", "address", "property_type"), computed("score", new Document("$meta", "searchScore"))))))
38 .forEach(doc -> System.out.println(doc.toJson() + "\n"));
39 }
40 }
41}

以下代码示例:

  • 导入mongodb包和依赖项。

  • 建立与您的 Atlas 集群的连接。

  • 打印与 AggregateFlow 实例中的查询相匹配的文档。

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // connect to your Atlas cluster
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12
13 // set namespace
14 val database = mongoClient.getDatabase("sample_airbnb")
15 val collection = database.getCollection<Document>("listingsAndReviews")
16
17 runBlocking {
18 // define pipeline
19 val agg = Document(
20 "\$search",
21 Document("index", "<INDEX-NAME>")
22 .append(
23 "compound",
24 Document(
25 "must", listOf(
26 Document(
27 "geoWithin",
28 Document(
29 "geometry",
30 Document("type", "Polygon")
31 .append(
32 "coordinates",
33 listOf(
34 listOf(
35 listOf(-161.323242, 22.512557),
36 listOf(-152.446289, 22.065278),
37 listOf(-156.09375, 17.811456),
38 listOf(-161.323242, 22.512557)
39 )
40 )
41 )
42 )
43 .append("path", "address.location")
44 )
45 )
46 )
47 .append(
48 "should", listOf(
49 Document(
50 "text",
51 Document("path", "property_type")
52 .append("query", "Condominium")
53 )
54 )
55 )
56 )
57 )
58
59 // run pipeline and print results
60 val resultsFlow = collection.aggregate<Document>(
61 listOf(
62 agg,
63 limit(10),
64 project(fields(
65 excludeId(),
66 include("name", "address", "property_type"),
67 computed("score", Document("\$meta", "searchScore"))
68 ))
69 )
70 )
71 resultsFlow.collect { println(it) }
72 }
73 mongoClient.close()
74}
Document{{name=Ocean View Waikiki Marina w/prkg, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Oʻahu, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.83919, 21.28634], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!, property_type=Condominium, address=Document{{street=Lahaina, HI, United States, suburb=Maui, government_area=Lahaina, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.68012, 20.96996], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Makaha Valley Paradise with OceanView, property_type=Condominium, address=Document{{street=Waianae, HI, United States, suburb=Leeward Side, government_area=Waianae, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-158.20291, 21.4818], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=March 2019 availability! Oceanview on Sugar Beach!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46881, 20.78621], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Tropical Jungle Oasis, property_type=Condominium, address=Document{{street=Hilo, HI, United States, suburb=Island of Hawaiʻi, government_area=South Hilo, market=The Big Island, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-155.09259, 19.73108], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=2 Bdrm/2 Bath Family Suite Ocean View, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Waikiki, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.82696, 21.27971], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=302 Kanai A Nalu Ocean front/view, property_type=Condominium, address=Document{{street=Wailuku, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.5039, 20.79664], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Sugar Beach Resort 1BR Ground Floor Condo !, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46697, 20.78484], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=2 BR Oceanview - Great Location!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Kihei/Wailea, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.44917, 20.73013], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.4409, 20.69735], is_location_exact=true}}}}, score=2.238388776779175}}

以下代码示例:

  • 导入 mongodb,即 MongoDB 的 Node.js 驱动程序。

  • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

  • 遍历游标以打印与查询匹配的文档。

1const { MongoClient } = require("mongodb");
2
3// connect to your Atlas cluster
4const uri ="<connection-string>";
5
6const client = new MongoClient(uri);
7
8async function run() {
9 try {
10 await client.connect();
11
12 // set namespace
13 const database = client.db("sample_airbnb");
14 const coll = database.collection("listingsAndReviews");
15
16 // define pipeline
17 const agg = [
18 {
19 '$search': {
20 'index': '<INDEX-NAME>',
21 'compound': {
22 'must': [
23 {
24 'geoWithin': {
25 'geometry': {
26 'type': 'Polygon',
27 'coordinates': [
28 [
29 [
30 -161.323242, 22.512557
31 ], [
32 -152.446289, 22.065278
33 ], [
34 -156.09375, 17.811456
35 ], [
36 -161.323242, 22.512557
37 ]
38 ]
39 ]
40 },
41 'path': 'address.location'
42 }
43 }
44 ],
45 'should': [
46 {
47 'text': {
48 'path': 'property_type',
49 'query': 'Condominium'
50 }
51 }
52 ]
53 }
54 }
55 }, {
56 '$limit': 10
57 }, {
58 '$project': {
59 '_id': 0,
60 'name': 1,
61 'address': 1,
62 'property_type': 1,
63 'score': {
64 '$meta': 'searchScore'
65 }
66 }
67 }
68 ];
69 // run pipeline
70 const result = await coll.aggregate(agg);
71
72 // print results
73 await result.forEach((doc) => console.log(doc));
74 } finally {
75 await client.close();
76 }
77}
78run().catch(console.dir);

以下代码示例:

  • 导入 pymongo 、MongoDB 的 Python 驱动程序和 dns 模块,这是使用 DNS 种子列表连接字符串将pymongo 连接到Atlas 所必需的。

  • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 使用复合$search阶段可以:

      • 指定结果must Polygon位于由 集定义的coordinates 内。

      • 优先显示condominium类型属性的结果。

    • 使用 $project 阶段以:

      • 排除除nameaddressproperty_type之外的所有字段。

      • 为每个返回的文档添加相关性score

  • 遍历游标以打印与查询匹配的文档。

1import pymongo
2
3# connect to your Atlas cluster
4client = pymongo.MongoClient('<connection-string>')
5
6# define pipeline
7pipeline = [
8 {
9 '$search': {
10 'index': '<INDEX-NAME>',
11 'compound': {
12 'must': [
13 {
14 'geoWithin': {
15 'geometry': {
16 'type': 'Polygon',
17 'coordinates': [
18 [
19 [
20 -161.323242, 22.512557
21 ], [
22 -152.446289, 22.065278
23 ], [
24 -156.09375, 17.811456
25 ], [
26 -161.323242, 22.512557
27 ]
28 ]
29 ]
30 },
31 'path': 'address.location'
32 }
33 }
34 ],
35 'should': [
36 {
37 'text': {
38 'path': 'property_type',
39 'query': 'Condominium'
40 }
41 }
42 ]
43 }
44 }
45 }, {
46 '$limit': 10
47 }, {
48 '$project': {
49 '_id': 0,
50 'name': 1,
51 'address': 1,
52 'property_type': 1,
53 'score': {
54 '$meta': 'searchScore'
55 }
56 }
57 }
58]
59# run pipeline
60result = client["sample_airbnb"]["listingsAndReviews"].aggregate(pipeline)
61
62# print results
63for i in result:
64 print(i)
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Primary Urban Center",
"location": {
"coordinates": [
-157.83919,
21.28634
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Honolulu, HI, United States",
"suburb": "O\u02bbahu"
},
"name": "Ocean View Waikiki Marina w/prkg",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Lahaina",
"location": {
"coordinates": [
-156.68012,
20.96996
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Lahaina, HI, United States",
"suburb": "Maui"
},
"name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Waianae",
"location": {
"coordinates": [
-158.20291,
21.4818
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Waianae, HI, United States",
"suburb": "Leeward Side"
},
"name": "Makaha Valley Paradise with OceanView",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.46881,
20.78621
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "March 2019 availability! Oceanview on Sugar Beach!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "South Hilo",
"location": {
"coordinates": [
-155.09259,
19.73108
],
"is_location_exact": true,
"type": "Point"
},
"market": "The Big Island",
"street": "Hilo, HI, United States",
"suburb": "Island of Hawai\u02bbi"
},
"name": "Tropical Jungle Oasis",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Primary Urban Center",
"location": {
"coordinates": [
-157.82696,
21.27971
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Honolulu, HI, United States",
"suburb": "Waikiki"
},
"name": "2 Bdrm/2 Bath Family Suite Ocean View",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.5039,
20.79664
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Wailuku, HI, United States",
"suburb": "Maui"
},
"name": "302 Kanai A Nalu Ocean front/view",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.46697,
20.78484
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "Sugar Beach Resort 1BR Ground Floor Condo !",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.44917,
20.73013
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Kihei/Wailea"
},
"name": "2 BR Oceanview - Great Location!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.4409,
20.69735
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC",
"property_type": "Condominium",
"score": 2.238388776779175
}

以下示例使用 geoWithin 操作符和 geometry 字段搜索夏威夷州的房产。type 字段指定区域是 GeoJSON 多边形还是多边形集合。

查询包括:

  • $limit 阶段将输出限制为 3 个结果。

  • $project 阶段排除 nameaddress 以外的所有字段。

注意

您无需在 Atlas Search 搜索查询中指定名为default的索引。如果索引有任何其他名称,则必须指定index字段。

1.. input::
2 :language: json
3 :linenos:
4
5 db.listingsAndReviews.aggregate([
6 {
7 "$search": {
8 "geoWithin": {
9 "geometry": {
10 "type": "MultiPolygon",
11 "coordinates": [
12 [[[-157.8412413882,21.2882235819],
13 [-157.8607925468,21.2962046205],
14 [-157.8646640634,21.3077019651],
15 [-157.862776699,21.320776283],
16 [-157.8341758705,21.3133826738],
17 [-157.8349985678,21.3000822569],
18 [-157.8412413882,21.2882235819]]],
19 [[[-157.852898124,21.301208833],
20 [-157.8580050499,21.3050871833],
21 [-157.8587346108,21.3098050385],
22 [-157.8508811028,21.3119240258],
23 [-157.8454308541,21.30396767],
24 [-157.852898124,21.301208833]]]
25 ]
26 },
27 "path": "address.location"
28 }
29 }
30 },
31 {
32 $limit: 3
33 },
34 {
35 $project: {
36 "_id": 0,
37 "name": 1,
38 "address": 1
39 }
40 }
41 ])
42
43.. output::
44 :language: javascript
45 :visible: false
46
47 {
48 "name" : "Heart of Honolulu, 2BD gem! Free Garage Parking!",
49 "address" : {
50 "street" : "Honolulu, HI, United States",
51 "suburb" : "Makiki/Lower Punchbowl/Tantalus",
52 "government_area" : "Primary Urban Center",
53 "market" : "Oahu",
54 "country" : "United States",
55 "country_code" : "US",
56 "location" : {
57 "type" : "Point",
58 "coordinates" : [ -157.84343, 21.30852 ],
59 "is_location_exact" : false
60 }
61 }
62 }
63 {
64 "name" : "Private Studio closed to town w/ compact parking",
65 "address" : {
66 "street" : "Honolulu, HI, United States",
67 "suburb" : "Oʻahu",
68 "government_area" : "Primary Urban Center",
69 "market" : "Oahu",
70 "country" : "United States",
71 "country_code" : "US",
72 "location" : {
73 "type" : "Point",
74 "coordinates" : [ -157.85228, 21.31184 ],
75 "is_location_exact" : true
76 }
77 }
78 }
79 {
80 "name" : "Comfortable Room (2) at Affordable Rates",
81 "address" : {
82 "street" : "Honolulu, HI, United States",
83 "suburb" : "Oʻahu",
84 "government_area" : "Primary Urban Center",
85 "market" : "Oahu",
86 "country" : "United States",
87 "country_code" : "US",
88 "location" : {
89 "type" : "Point",
90 "coordinates" : [ -157.83889, 21.29776 ],
91 "is_location_exact" : false
92 }
93 }
94 }

后退

geoShape