$searchステージで scoreDetailsブール値オプションを使用すると、クエリ結果内の各ドキュメントのスコアの詳細な内訳を示すことができます。 メタデータを表示するには、 ステージで $project$meta 式を使用する必要があります。
構文
{ "$search": { "<operator>": { <operator-specification> }, "scoreDetails": true | false } }, { "$project": { "scoreDetails": {"$meta": "searchScoreDetails"} } }
オプション
$search ステージでは、 scoreDetailsブール値オプションは次のいずれかの値を取ります。
true- 結果にドキュメントのスコアの詳細を含める場合。trueに設定すると、 MongoDB Search は結果の各ドキュメントのスコアの詳細な内訳を返します。詳細については、出力を参照してください。false- 結果のスコア内訳の詳細を除外します。 (デフォルト)
省略した場合、 scoreDetailsオプションはデフォルトでfalseになります。
$project ステージでは、 scoreDetailsフィールドは$meta式。これには、次の値が必要です。
| 結果内の各ドキュメントのスコアの詳細な内訳を返します。 |
出力
scoreDetailsオプションは、結果内の各ドキュメントのscoreDetailsオブジェクト内のdetails配列の次のフィールドを返します。
フィールド | タイプ | 説明 |
|---|---|---|
| float | |
| string | ドキュメントがスコア付けされた方法と、スコアの計算に考慮された要素に関する詳細を含む、スコアリング式のサブセット。 最上位の 詳細については、「 スコアに貢献する要因 」を参照してください。 |
| オブジェクトの配列 | スコアリング 式のサブセットに基づく、ドキュメント内の各一致のスコアの内訳。 値は、 構造内で再帰的なスコア詳細オブジェクトの配列です。 |
スコアに貢献する要因
異なるクエリ演算子は、異なるアルゴリズムを使用して結果内の各ドキュメントの searchScore を計算します。次のセクションでは、一般的なクエリ演算子がスコアリングを取り扱う方法について説明します。
text、 phrase、queryString、 autocomplete 演算子
デフォルトでは、テキスト、フレーズ、queryString、およびオートコンプリート演算子は、ドキュメントをスコア化するために bm25類似性アルゴリズムを使用します。
複数のクエリにわたって一貫した結果が必要な場合、特に次の両方が当てはまる場合は、stableTfl または boolean アルゴリズムを使用することをお勧めします。
アプリケーションにより結果が
searchScoreでソートされ、結果がページ分割されます。これにより、重複やスキップされたドキュメントを防止するために決定的なスコアリングが可能になります。配置で専用のMongoDB Search ノードを使用しているか、読み込み設定(読み込み設定 (read preference)が
secondaryまたはnearestに設定されているため、最初と後続のクエリが別のMongoDB Search ノードにルーティングされる可能性が高くなります。
bm25 スコアは後続のクエリ間で一貫しない可能性があります。各MongoDB SearchノードはMongoDB Search インデックスを構築し、アップデート操作と削除操作を独立して実行するため、ドキュメントコーパスはMongoDB Search ノード間で異なる場合があります。 bm25 の計算はドキュメントコーパスに依存するため、異なるMongoDB Search ノードにルーティングされる後続のクエリでは、同じドキュメントに対して異なる bm25 スコアが計算される可能性があります。
別の類似性アルゴリズムsimilarity.type を使用するには、 MongoDB Search または タイプとしてインデックスフィールドのMongoDB Searchインデックス定義でstring autocompleteプロパティを指定します。これらのタイプのMongoDB Searchインデックスを構成する方法については、「 string フィールドにインデックスを付ける方法 」または「 オートコンプリート用にフィールドをインデックスする方法 」を参照してください。
MongoDB Searchインデックス定義で similarity.typeプロパティを指定すると、次の類似性アルゴリズムから選択できます。
bm25
bm25 は、次の基づいてドキュメントをランク付けする一般的なランキングアルゴリズムです。
ターム頻度(クエリタームが出現するドキュメントの方がスコアが高い頻度)
ドキュメントの長さ(長いドキュメントほどスコアが低くなります)
タームの少数化: コーパス内での頻度の低いタームの方がより重要な負荷となります。
bm25 スコアを boost * idf * tf として計算します。各係数は次のように定義されます。
因子 | 説明 | |
|---|---|---|
| クエリ演算子の | |
| クエリの逆ドキュメント頻度。MongoDB Search は、次の式を使用して頻度を計算します。 以下の条件に一致するもの。
| |
| ターム頻度。MongoDB Search は、次の式を使用して頻度を計算します。 以下の条件に一致するもの。
|
ブール値
boolean は、各クエリタームがドキュメントに存在するかどうかを確認し、見つかったタームの数をカウントするスコアリングアルゴリズムです。一致するタームはすべて均等に扱われ、タームの重要性や頻度は調整されません。
boolean の場合、スコアはドキュメントに存在するすべてのクエリタームの合計として計算されます。各タームはドキュメントに存在する場合、1 の値に貢献します。
stableTfl
stableTfl は、タームの長さを使用してタームの少数性を導き出すカスタムMongoDB Search ランキングアルゴリズムです。これは、長い単語の表示頻度が低い順(頻度が低い)を示す Zip の規則に基づいています。
stableTfl スコアを boost * tr * tf として計算します。各係数は次のように定義されます。
因子 | 説明 | |
|---|---|---|
| クエリ演算子の | |
| 減算関数。 MongoDB Search は、次の式を使用して減少関数を計算します。 以下の条件に一致するもの。
| |
| まれにターム。 MongoDB Search は、次の式を使用してターム の少数を計算します。 以下の条件に一致するもの。
| |
| Zipf の法に基づく確率関数。 MongoDB Search は、次の式を使用して、ドキュメントにクエリタームが出現する確率を計算します。 以下の条件に一致するもの。
|
near 演算子
near 演算子は、距離減少関数を使用してドキュメントをスコアリングします。 値として設定した数値、日付、または地理的点に対するMongoDB Search originの結果の近接性を測定します。
距離減少関数はスコアを pivot / (pivot +
distance) として計算し、各係数は次のように定義されます。
因子 | 説明 | |
|---|---|---|
|
| |
|
以下の条件に一致するもの。
|
例
次の例は、次の の結果内のスコアの詳細を取得する方法を示しています。
クエリは、テキスト、ほぼ、複合、および埋め込みドキュメント演算子を使用して実行されます。
functionオプション式を使用してスコアが変更されたクエリ。
Tip
オブジェクトの配列で再帰的にスコアの詳細を表示するには、次のコマンドを実行してmongoshの設定を構成します。
config.set('inspectDepth', Infinity)
演算子の例
次の例は、$searchscoreDetails テキスト 、 近似 、 複合 、 embeddedDocument 演算子クエリの結果内のドキュメントに対して オプションを使用してスコアの内訳を検索する方法を示しています。
カスタム スコアの例
$searchscoreDetails次の例は、sample_mflix.movies コレクションに対する 関数式のサンプル クエリの結果内のドキュメントに対して オプションを使用してスコアの内訳を取得する方法を示しています。
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "multiply":[ 9 { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 2 13 } 14 }, 15 { 16 "score": "relevance" 17 } 18 ] 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 $limit: 5 27 }, 28 { 29 $project: { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 }])
[ { title: 'Men...', score: 23.431293487548828, scoreDetails: { value: 23.431293487548828, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 23.431293487548828, description: '(imdb.rating * scores)', details: [] } ] } }, { title: '12 Angry Men', score: 22.080968856811523, scoreDetails: { value: 22.080968856811523, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 22.080968856811523, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'Matchstick Men', score: 21.05954933166504, scoreDetails: { value: 21.05954933166504, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.05954933166504, description: '(imdb.rating * scores)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "men", 7 "score": { 8 "function":{ 9 "constant": 3 10 } 11 } 12 }, 13 "scoreDetails": true 14 } 15 }, 16 { 17 $limit: 5 18 }, 19 { 20 $project: { 21 "_id": 0, 22 "title": 1, 23 "score": { "$meta": "searchScore" }, 24 "scoreDetails": {"$meta": "searchScoreDetails"} 25 } 26 } 27 ])
[ { title: 'Men Without Women', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'One Hundred Men and a Girl', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'Of Mice and Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: "All the King's Men", score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'The Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "shop", 7 "score": { 8 "function":{ 9 "gauss": { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 4.6 13 }, 14 "origin": 9.5, 15 "scale": 5, 16 "offset": 0, 17 "decay": 0.5 18 } 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 "$limit": 10 27 }, 28 { 29 "$project": { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 } 36 ])
[ { title: 'The Shop Around the Corner', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Exit Through the Gift Shop', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Shop on Main Street', score: 0.9395227432250977, scoreDetails: { value: 0.9395227432250977, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9395227432250977, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Chop Shop', score: 0.8849083781242371, scoreDetails: { value: 0.8849083781242371, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8849083781242371, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Little Shop of Horrors', score: 0.8290896415710449, scoreDetails: { value: 0.8290896415710449, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8290896415710449, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Suicide Shop', score: 0.7257778644561768, scoreDetails: { value: 0.7257778644561768, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.7257778644561768, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'A Woman, a Gun and a Noodle Shop', score: 0.6559237241744995, scoreDetails: { value: 0.6559237241744995, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6559237241744995, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Beauty Shop', score: 0.6274620294570923, scoreDetails: { value: 0.6274620294570923, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6274620294570923, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "path": { 9 "value": "imdb.rating", 10 "undefined": 4.6 11 } 12 } 13 } 14 }, 15 "scoreDetails": true 16 } 17 }, 18 { 19 $limit: 5 20 }, 21 { 22 $project: { 23 "_id": 0, 24 "title": 1, 25 "score": { "$meta": "searchScore" }, 26 "scoreDetails": {"$meta": "searchScoreDetails"} 27 } 28 }])
[ { title: '12 Angry Men', score: 8.899999618530273, scoreDetails: { value: 8.899999618530273, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.899999618530273, description: 'imdb.rating', details: [] } ] } }, { title: 'The Men Who Built America', score: 8.600000381469727, scoreDetails: { value: 8.600000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.600000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'No Country for Old Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'The Best of Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "score": "relevance" 9 } 10 } 11 }, 12 "scoreDetails": true 13 } 14 }, 15 { 16 $limit: 5 17 }, 18 { 19 $project: { 20 "_id": 0, 21 "title": 1, 22 "score": { "$meta": "searchScore" }, 23 "scoreDetails": {"$meta": "searchScoreDetails"} 24 } 25 }])
[ { title: 'Men...', score: 3.4457783699035645, scoreDetails: { value: 3.4457783699035645, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'weight($type:string/title:men in 4705) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.6196683645248413, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 1, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'The Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 870) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Simple Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 6371) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'X-Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8368) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Mystery Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8601) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function": { 8 "log": { 9 "path": { 10 "value": "imdb.rating", 11 "undefined": 10 12 } 13 } 14 } 15 } 16 }, 17 "scoreDetails": true 18 } 19 }, 20 { 21 $limit: 5 22 }, 23 { 24 $project: { 25 "_id": 0, 26 "title": 1, 27 "score": { "$meta": "searchScore" }, 28 "scoreDetails": {"$meta": "searchScoreDetails"} 29 } 30 }])
[ { title: '12 Angry Men', score: 0.9493899941444397, scoreDetails: { value: 0.9493899941444397, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9493899941444397, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Men Who Built America', score: 0.9344984292984009, scoreDetails: { value: 0.9344984292984009, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9344984292984009, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'No Country for Old Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Best of Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } } ]