MongoDB Search$search explainクエリは、explain メソッドを有効にしてクエリを実行すると、 クエリプランと実行統計に関する情報を返します。 を使用してクエリを実行すると、 MongoDB Search は、クエリが Lucene の内部で実行された方法を説明する統計とメタデータを含む BSONドキュメントを返します。
Tip
構文
db.<myCollection>.explain("<verbosity>").aggregate([ { $search: { "<operator>": { "<operator-options>" } } } ])
冗長
冗長モードは、explain の動作と返される情報の量を制御します。値は、冗長を減らすために、次のいずれかになります。
クエリの実行統計を含む | |
クエリの実行統計情報をもつ | |
queryPlanner (デフォルト) | クエリプランに関する情報。 |
Tip
出力
explain メソッドを使用するクエリは、stages.$_internalSearchMongotRemoteオブジェクト内の次のフィールドを返します。
オプション | タイプ | 目的 |
|---|---|---|
| ドキュメント | 実行したクエリが含まれます。 |
| ドキュメント |
|
| 整数の配列 |
|
explain の結果
explainメソッドは、 ドキュメント内に次のフィールドを含むBSONドキュメントを返します。explain
オプション | タイプ | 必要性 | 目的 |
|---|---|---|---|
| ドキュメント | 任意 | コレクターの実行統計を説明します。 |
| ドキュメント | 任意 | |
| ドキュメントの配列 | 任意 | インデックスごとのパーティションの詳細が含まれています。これは2つ以上のインデックス パーティションを設定した場合にのみ返されます。 |
| ドキュメント | 任意 | 有用なメタデータを含んでいます。 |
| ドキュメント | 任意 | クエリの実行統計を記述します。これは返されません。 |
| ドキュメント | 任意 | クエリ実行後に Lucene からドキュメントごとのデータを取得するための詳細。 |
| ドキュメント | 任意 | クエリが実行されたときのリソース使用状況を詳述します。 |
collectors
collectors BSON ドキュメントには、次のフィールドが含まれています。
フィールド | タイプ | 必要性 | 目的 |
|---|---|---|---|
| ドキュメント | 必須 | クエリのすべてのコレクターの統計情報。報告される統計は、クエリで使用されるすべてのコレクターにわたる最大値または、すべてのサブコレクションにわたる統計の合計を表します。タイミング統計は、クエリ全体のすべてのコレクターで費やされた合計時間を反映するように合計されます。詳しくは |
| ドキュメント | 任意 | |
| ドキュメント | 任意 |
allCollectorStats
allCollectorStats BSON ドキュメントには、クエリで指定されたすべてのコレクターの統計が記述されており、facet や sort が含まれます。これには、次のキーが含まれています。
フィールド | 説明 |
|---|---|
| コレクターが収集した期間と結果の数を追跡します。 |
| コレクターから |
| スコアラーがコレクターに設定された合計時間と回数を追跡する統計。 |
facet
facet は、BSON ドキュメントであり、クエリにファセットを指定した場合のクエリおよび実行統計を詳細に示します。次のフィールドが含まれています。
オプション | タイプ | 必要性 | 目的 |
|---|---|---|---|
| ドキュメント | 任意 |
|
| ドキュメント | 任意 | すべてのファセット グループを保持する内部の Lucene オブジェクトの作成に関連する統計を表示します。 |
| ドキュメント | 必須 | クエリに一致したドキュメントと Lucene インデックス全体の両方に対して、ファセット対象のフィールドをその濃度にマッピングします。これにより、各フィールドについて次の濃度情報が提供されます。
|
sort
sort は、クエリでソートを指定したときに、クエリと実行統計を詳細に示す BSON ドキュメントです。次のフィールドが含まれています。
オプション | タイプ | 必要性 | 目的 |
|---|---|---|---|
| ドキュメント | 任意 | すべてのソート フィールドにわたる
|
| ドキュメント | 必須 | ソート対象のフィールドを、そのフィールドのインデックスに存在するデータ型のリストにマッピングします。 |
highlight
highlight は、クエリでハイライトを指定した場合に、クエリと実行の統計を詳細に示す BSON ドキュメントです。次のフィールドが含まれています。
オプション | タイプ | 必要性 | 目的 |
|---|---|---|---|
| List<String> | 必須 | ハイライトされたすべてのフィールドの一覧。クエリの |
| QueryExecutionArea | 任意 | ハイライトの設定および実行に関連する呼び出しとタイミングの統計。次のフィールドが含まれています。
|
indexPartitionExplain
indexPartitionExplain には、各インデックス パーティションの結果説明が含まれています。最上位の collectors と query は各インデックス パーティションの explain 情報内にあり、最上位レベルには存在しません。
metadata
metadata には、次のような有用なメタデータが含まれています。
フィールド | タイプ | 必要性 | 目的 |
|---|---|---|---|
| 文字列 | 任意 |
|
| 文字列 | 任意 |
|
| 文字列 | 任意 | クエリで使用されるMongoDB Searchインデックス。 |
| ドキュメント | 任意 |
|
| 整数 | 任意 | 削除されたドキュメントを含むインデックス内のインデックス オブジェクトの総数。 |
query
query BSON ドキュメントには、クエリの実行統計が記述されています。次のフィールドが含まれています。
フィールド | タイプ | 必要性 | 目的 |
|---|---|---|---|
| string | 任意 | 演算子へのパス(ルートでない場合のみ)。 |
| string | 必須 | MongoDB Search 演算子が作成した Lucene クエリの名前。詳しくは、 |
| string | 任意 | |
| ドキュメント | 必須 | Lucene クエリ情報。詳細については、 |
| ドキュメント | 任意 |
|
args
検索コマンドの explain 応答 には、そのコマンドで実行されたクエリに関する情報が含まれます。argsフィールドの応答には、 MongoDB Search が $search クエリを満たすために実行した Lucene クエリの構造化された詳細が含まれます。
このセクションには、次の内容が含まれています。
MongoDB Search 演算子が作成する Lucene クエリの一部
構造化サマリーに含まれる Lucene クエリ オプション
各 Lucene クエリ タイプの Lucene クエリ構造の概要の例
注意
例について
このセクションの例は、サンプル データセットに対して queryPlanner 冗長モードで実行されたクエリに基づいています。この例の応答は、次のようになります。
mongotQueryフィールドには、 MongoDB Search 演算子と実行されたクエリが表示されます。explain.typeフィールドには、演算子が作成した Lucene クエリが表示されます。
完全な例については、「例」を参照してください。
BooleanQueryLucene
BooleanQueryの場合、構造化されたサマリーには次のオプションに関する詳細が含まれます。フィールドタイプ必要性説明must任意
一致する必要がある句。
mustNot任意
一致してはならない句。
should任意
一致する必要がある句。
filter任意
すべて一致する必要がある句。
minimumShouldMatch整数
任意
一致する必要がある
should句の最小数。
ConstantScoreQuery定数スコアクエリの場合、構造化されたサマリーには次のオプションの詳細が含まれます。
フィールドタイプ必要性説明query必須
ConstantScoreQueryの子。次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "equals" : { 7 "path" : "host.host_identity_verified", 8 "value" : true 9 } 10 }, 11 "explain" : { 12 "type" : "ConstantScoreQuery", 13 "args" : { 14 "query" : { 15 "type" : "TermQuery", 16 "args" : { 17 "path" : "host.host_identity_verified", 18 "value" : "T" 19 } 20 } 21 } 22 } 23 } 24 }, 25 { 26 "$_internalSearchIdLookup" : { } 27 } 28 ], 29 ... 30 }
FunctionScoreQueryLucene
FunctionScoreQueryクエリの場合、構造化されたサマリーには次のオプションに関する詳細が含まれます。フィールドタイプ必要性説明scoreFunctionstring
必須
クエリで使用される スコア式 。
query必須
クエリ。
次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "near" : { 7 "path" : "accomodates", 8 "origin" : 8, 9 "pivot" : 2 10 } 11 }, 12 "explain" : { 13 "type" : "BooleanQuery", 14 "args" : { 15 "must" : [ ], 16 "mustNot" : [ ], 17 "should" : [ 18 { 19 "type" : "BooleanQuery", 20 "args" : { 21 "must" : [ ], 22 "mustNot" : [ ], 23 "should" : [ 24 { 25 "type" : "FunctionScoreQuery", 26 "args" : { 27 "scoreFunction" : "expr(pivot / (pivot + abs(origin - value)))", 28 "query" : { 29 "type" : "LongDistanceFeatureQuery", 30 "args" : { }, 31 "stats" : { } 32 } 33 } 34 } 35 ], 36 "filter" : [ 37 { 38 "type" : "PointRangeQuery", 39 "args" : { 40 "path" : "accomodates", 41 "representation" : "double", 42 "gte" : 8.000000000000002, 43 "lte" : NaN 44 } 45 } 46 ], 47 "minimumShouldMatch" : 0 48 } 49 }, 50 { 51 "type" : "LongDistanceFeatureQuery", 52 "args" : { }, 53 "stats" : { } 54 } 55 ], 56 "filter" : [ ], 57 "minimumShouldMatch" : 0 58 } 59 } 60 }, 61 ... 62 }, 63 ... 64 ], 65 ... 66 }
LatLonPointDistanceQueryLucene
LatLonPointDistanceQueryクエリの場合、応答にはstatsのみが含まれます。次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "geoWithin" : { 7 "path" : "address.location", 8 "circle" : { 9 "radius" : 4800, 10 "center" : { 11 "type" : "Point", 12 "coordinates" : [ 13 -122.419472, 14 37.765302 15 ] 16 } 17 } 18 } 19 }, 20 "explain" : { 21 "type" : "LatLonPointDistanceQuery", 22 "args" : { } 23 } 24 } 25 }, 26 ... 27 ], 28 ... 29 }
LatLonShapeQueryLucene
LatLonShapeQueryクエリの場合、応答にはstatsのみが含まれます。次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "geoShape" : { 7 "path" : "address.location", 8 "relation" : "within", 9 "geometry" : { 10 "type" : "Polygon", 11 "coordinates" : [ 12 [ 13 [ -74.3994140625, 40.5305017757 ], 14 [ -74.7290039063, 40.5805846641 ], 15 [ -74.7729492188, 40.9467136651 ], 16 [ -74.0698242188, 41.1290213475 ], 17 [ -73.65234375, 40.9964840144 ], 18 [ -72.6416015625, 40.9467136651 ], 19 [ -72.3559570313, 40.7971774152 ], 20 [ -74.3994140625, 40.5305017757 ] 21 ] 22 ] 23 } 24 } 25 }, 26 "explain" : { 27 "type" : "LatLonShapeQuery", 28 "args" : { } 29 } 30 }, 31 ... 32 }, 33 ... 34 ], 35 ... 36 }
LongDistanceFeatureQueryLucene
LongDistanceFeatureQueryの場合、応答にはstatsのみが含まれます。次の例では、
sample_mflix.moviesコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "near" : { 7 "path" : "released", 8 "origin" : ISODate("1915-09-13T00:00:00Z"), 9 "pivot" : 7776000000 10 } 11 }, 12 "explain" : { 13 "type" : "LongDistanceFeatureQuery", 14 "args" : { } 15 } 16 }, 17 ... 18 }, 19 ... 20 ], 21 ... 22 }
MultiTermQueryConstantScoreWrapperLucene
MultiTermQueryConstantScoreWrapperクエリの場合、構造化されたサマリーには次の引数に関する詳細が含まれます。フィールドタイプ必要性説明queriesリスト<explain の結果>
必須
クエリのリスト。
次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "regex" : { 7 "path" : "access", 8 "query" : "full(.{0,5})", 9 "allowAnalyzedField" : true 10 } 11 }, 12 "explain" : { 13 "type" : "MultiTermQueryConstantScoreWrapper", 14 "args" : { 15 "queries" : [ 16 { 17 "type" : "DefaultQuery", 18 "args" : { 19 "queryType" : "RegexpQuery" 20 } 21 } 22 ] 23 } 24 } 25 }, 26 ... 27 }, 28 ... 29 ], 30 ... 31 }
PhraseQueryLucene
PhraseQueryクエリの場合、構造化されたサマリーには次の引数に関する詳細が含まれます。フィールドタイプ必要性説明path文字列
必須
検索するインデックス付きフィールド。
query文字列
必須
検索する文字列または複数の文字列。
slop番号
必須
queryフレーズ内の単語間の許容距離。次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "phrase" : { 7 "path" : "description", 8 "query" : "comfortable apartment", 9 "slop" : 2 10 } 11 }, 12 "explain" : { 13 "type" : "PhraseQuery", 14 "args" : { 15 "path" : "description", 16 "query" : "[comfortable, apartment]", 17 "slop" : 2 18 } 19 } 20 }, 21 ... 22 }, 23 ... 24 ], 25 ... 26 }
PointRangeQueryLucene
PointRangeQueryクエリの場合、構造化されたサマリーには次の引数に関する詳細が含まれます。フィールドタイプ必要性説明path文字列
必須
検索するインデックス付きフィールド。
representation文字列
任意
数値表現。 日付型データに対するクエリには表現は含まれません。
gte番号
任意
クエリの下限。
lte番号
任意
クエリの上限。
次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "range" : { 7 "path" : "number_of_reviews", 8 "gt" : 5 9 } 10 }, 11 "explain" : { 12 "type" : "BooleanQuery", 13 "args" : { 14 "must" : [ ], 15 "mustNot" : [ ], 16 "should" : [ 17 { 18 "type" : "PointRangeQuery", 19 "args" : { 20 "path" : "number_of_reviews", 21 "representation" : "double", 22 "gte" : 5.000000000000001 23 } 24 }, 25 { 26 "type" : "PointRangeQuery", 27 "args" : { 28 "path" : "number_of_reviews", 29 "representation" : "int64", 30 "gte" : NumberLong(6) 31 } 32 } 33 ], 34 "filter" : [ ], 35 "minimumShouldMatch" : 0 36 } 37 } 38 }, 39 ... 40 }, 41 ... 42 ], 43 ... 44 }
TermQueryターム クエリの場合、構造化されたサマリーには次の引数に関する詳細が含まれます。
フィールドタイプ必要性説明path文字列
必須
検索するインデックス付きフィールド。
value文字列
必須
検索する string。
次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "queryString" : { 7 "defaultPath" : "summary", 8 "query" : "quiet" 9 } 10 }, 11 "explain" : { 12 "type" : "TermQuery", 13 "args" : { 14 "path" : "summary", 15 "value" : "quiet" 16 } 17 } 18 }, 19 ... 20 }, 21 ... 22 ], 23 ... 24 }
Default別の Lucene クエリによって明示的に定義されていない Lucene クエリは、デフォルトのクエリを使用して直列化されます。 構造化されたサマリーには、次のオプションの詳細が含まれます。
フィールドタイプ必要性説明queryType文字列
必須。
Lucene クエリのタイプ。
次の例では、
sample_airbnb.listingsAndReviewsコレクションに対してクエリを実行した場合のexplain応答を示しています。1 { 2 "stages" : [ 3 { 4 "$_internalSearchMongotRemote" : { 5 "mongotQuery" : { 6 "near" : { 7 "origin" : { 8 "type" : "Point", 9 "coordinates" : [ 10 -8.61308, 11 41.1413 12 ] 13 }, 14 "pivot" : 1000, 15 "path" : "address.location" 16 } 17 }, 18 "explain" : { 19 "type" : "DefaultQuery", 20 "args" : { 21 "queryType" : "LatLonPointDistanceFeatureQuery" 22 } 23 } 24 }, 25 ... 26 }, 27 ... 28 ], 29 ... 30 }
stats
executionStats と allPlansExecution の冗長モードのexplain レスポンスにはstats 、クエリ実行のさまざまな段階でクエリ に費やされた 時間 に関する情報を含む フィールドが含まれています。
タイミングの内訳
クエリの領域
統計は、クエリの次の領域で利用できます。
resultMaterialization
resultMaterialization ドキュメントは、mongot が次の操作を実行するのにかかる時間を示しています。
Lucene に保存されている結果データを
_idまたはstoredSourceの形式で検索します。mongodに送信する前に、データを BSON 形式にシリアル化してください。
詳細については、stats をご覧ください。
resourceUsage
resourceUsage ドキュメントには、クエリの実行に使用されるリソースが表示されます。次のフィールドが含まれています。
フィールド | タイプ | 必要性 | 目的 |
|---|---|---|---|
| Long | 必須 | クエリ実行中にシステムがメモリ内で必要なデータを見つけられず、ディスクなどのバッキング ストアから読み込む場合に発生するメジャーなページ フォールトの数。 |
| Long | 必須 | データがページキャッシュにあるが、まだプロセスのページテーブルにマップされていない場合に発生するマイナーページフォールトの数。 |
| Long | 必須 | ユーザー空間で費やされた CPU 時間(ミリ秒単位)。 |
| Long | 必須 | システム空間で費やされた CPU 時間(ミリ秒単位)。 |
| 整数 | 必須 | すべてのバッチでのクエリ実行中に |
| 整数 | 必須 | クエリのプロセシング中に |
例
次の例えでは、sample_mflix データベースの movies コレクションを使用します。
Tip
サンプルデータセットをすでに読み込んでいる場合は、 「 MongoDB Search クイック スタート 」のチュートリアルを参照して、インデックス定義を作成し、 MongoDB Search クエリを実行します。
allPlansExecution
次の例では、さまざまな演算子を使用して、title フィールドを allPlansExecution 冗長モードでクエリします。
db.movies.explain("allPlansExecution").aggregate([ { $search: { "text": { "path": "title", "query": "yark", "fuzzy": { "maxEdits": 1, "maxExpansions": 100, } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { 8 path: 'title', 9 query: 'yark', 10 fuzzy: { maxEdits: 1, maxExpansions: 100 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [], 18 mustNot: [], 19 should: [ 20 { 21 type: 'BoostQuery', 22 args: { 23 query: { 24 type: 'TermQuery', 25 args: { path: 'title', value: 'mark' }, 26 stats: { 27 context: { millisElapsed: 0 }, 28 match: { millisElapsed: 0 }, 29 score: { millisElapsed: 0 } 30 } 31 }, 32 boost: 0.75 33 }, 34 stats: { 35 context: { 36 millisElapsed: 0.209279, 37 invocationCounts: { 38 createWeight: Long('2'), 39 createScorer: Long('18') 40 } 41 }, 42 match: { 43 millisElapsed: 0.028079, 44 invocationCounts: { nextDoc: Long('22') } 45 }, 46 score: { 47 millisElapsed: 0.01706, 48 invocationCounts: { score: Long('16') } 49 } 50 } 51 }, 52 { 53 type: 'BoostQuery', 54 args: { 55 query: { 56 type: 'TermQuery', 57 args: { path: 'title', value: 'yard' }, 58 stats: { 59 context: { millisElapsed: 0 }, 60 match: { millisElapsed: 0 }, 61 score: { millisElapsed: 0 } 62 } 63 }, 64 boost: 0.75 65 }, 66 stats: { 67 context: { 68 millisElapsed: 0.136254, 69 invocationCounts: { 70 createWeight: Long('2'), 71 createScorer: Long('14') 72 } 73 }, 74 match: { 75 millisElapsed: 0.008556, 76 invocationCounts: { nextDoc: Long('10') } 77 }, 78 score: { 79 millisElapsed: 0.006096, 80 invocationCounts: { score: Long('6') } 81 } 82 } 83 }, 84 { 85 type: 'BoostQuery', 86 args: { 87 query: { 88 type: 'TermQuery', 89 args: { path: 'title', value: 'york' }, 90 stats: { 91 context: { millisElapsed: 0 }, 92 match: { millisElapsed: 0 }, 93 score: { millisElapsed: 0 } 94 } 95 }, 96 boost: 0.75 97 }, 98 stats: { 99 context: { 100 millisElapsed: 0.303568, 101 invocationCounts: { 102 createWeight: Long('2'), 103 createScorer: Long('18') 104 } 105 }, 106 match: { 107 millisElapsed: 0.374856, 108 invocationCounts: { nextDoc: Long('62') } 109 }, 110 score: { 111 millisElapsed: 0.892383, 112 invocationCounts: { score: Long('56') } 113 } 114 } 115 }, 116 { 117 type: 'BoostQuery', 118 args: { 119 query: { 120 type: 'TermQuery', 121 args: { path: 'title', value: 'ark' }, 122 stats: { 123 context: { millisElapsed: 0 }, 124 match: { millisElapsed: 0 }, 125 score: { millisElapsed: 0 } 126 } 127 }, 128 boost: 0.6666666269302368 129 }, 130 stats: { 131 context: { 132 millisElapsed: 8.379562, 133 invocationCounts: { 134 createWeight: Long('2'), 135 createScorer: Long('10') 136 } 137 }, 138 match: { 139 millisElapsed: 2.073272, 140 invocationCounts: { nextDoc: Long('6') } 141 }, 142 score: { 143 millisElapsed: 0.004063, 144 invocationCounts: { score: Long('4') } 145 } 146 } 147 }, 148 { 149 type: 'BoostQuery', 150 args: { 151 query: { 152 type: 'TermQuery', 153 args: { path: 'title', value: 'dark' }, 154 stats: { 155 context: { millisElapsed: 0 }, 156 match: { millisElapsed: 0 }, 157 score: { millisElapsed: 0 } 158 } 159 }, 160 boost: 0.75 161 }, 162 stats: { 163 context: { 164 millisElapsed: 0.679029, 165 invocationCounts: { 166 createWeight: Long('2'), 167 createScorer: Long('18') 168 } 169 }, 170 match: { 171 millisElapsed: 5.500198, 172 invocationCounts: { nextDoc: Long('172') } 173 }, 174 score: { 175 millisElapsed: 2.465502, 176 invocationCounts: { score: Long('166') } 177 } 178 } 179 }, 180 { 181 type: 'BoostQuery', 182 args: { 183 query: { 184 type: 'TermQuery', 185 args: { path: 'title', value: 'park' }, 186 stats: { 187 context: { millisElapsed: 0 }, 188 match: { millisElapsed: 0 }, 189 score: { millisElapsed: 0 } 190 } 191 }, 192 boost: 0.75 193 }, 194 stats: { 195 context: { 196 millisElapsed: 0.221919, 197 invocationCounts: { 198 createWeight: Long('2'), 199 createScorer: Long('18') 200 } 201 }, 202 match: { 203 millisElapsed: 0.116139, 204 invocationCounts: { nextDoc: Long('60') } 205 }, 206 score: { 207 millisElapsed: 0.056817, 208 invocationCounts: { score: Long('54') } 209 } 210 } 211 } 212 ], 213 filter: [], 214 minimumShouldMatch: 0 215 }, 216 stats: { 217 context: { 218 millisElapsed: 25.303419, 219 invocationCounts: { createWeight: Long('2'), createScorer: Long('12') } 220 }, 221 match: { 222 millisElapsed: 10.533183, 223 invocationCounts: { nextDoc: Long('308') } 224 }, 225 score: { 226 millisElapsed: 5.501189, 227 invocationCounts: { score: Long('302') } 228 } 229 } 230 }, 231 collectStats: { 232 allCollectorStats: { 233 millisElapsed: 6.735626, 234 invocationCounts: { 235 collect: Long('302'), 236 competitiveIterator: Long('6'), 237 setScorer: Long('6') 238 } 239 }, 240 facet: { collectorStats: { millisElapsed: 0 } } 241 }, 242 resultMaterialization: { 243 stats: { 244 millisElapsed: 176.613905, 245 invocationCounts: { retrieveAndSerialize: Long('2') } 246 } 247 }, 248 metadata: { 249 <hostname>.mongodb.netmongotVersion: '1.42.0', 250 mongotHostName: '<hostname>.mongodb.net', 251 indexName: 'default', 252 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 253 totalLuceneDocs: 21349 254 }, 255 resourceUsage: { 256 majorFaults: Long('99'), 257 minorFaults: Long('192'), 258 userTimeMs: Long('80'), 259 systemTimeMs: Long('10'), 260 maxReportingThreads: 1, 261 numBatches: 2 262 } 263 }, 264 requiresSearchMetaCursor: false, 265 internalMongotBatchSizeHistory: [ Long('108'), Long('162') ] 266 }, 267 nReturned: Long('151'), 268 executionTimeMillisEstimate: Long('83') 269 }, 270 { 271 '$_internalSearchIdLookup': { 272 subPipeline: [ 273 { '$match': { _id: { '$eq': '_id placeholder' } } } 274 ], 275 totalDocsExamined: Long('151'), 276 totalKeysExamined: Long('151'), 277 numDocsFilteredByIdLookup: Long('0') 278 }, 279 nReturned: Long('151'), 280 executionTimeMillisEstimate: Long('88') 281 } 282 ], 283 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 284 serverInfo: { 285 host: '<hostname>.mongodb.net', 286 port: 27017, 287 version: '8.2.0', 288 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 289 }, 290 serverParameters: { 291 ... 292 }, 293 command: { 294 aggregate: 'movies', 295 pipeline: [ 296 { 297 '$search': { 298 text: { 299 path: 'title', 300 query: 'yark', 301 fuzzy: { maxEdits: 1, maxExpansions: 100 } 302 } 303 } 304 } 305 ], 306 cursor: {}, 307 '$db': 'sample_mflix' 308 }, 309 ok: 1, 310 '$clusterTime': { 311 clusterTime: Timestamp({ t: 1758295936, i: 19 }), 312 signature: { 313 hash: Binary.createFromBase64('+CanjrL9jdXPTLa2sUaNPtImkBc=', 0), 314 keyId: Long('7551379485140975621') 315 } 316 }, 317 operationTime: Timestamp({ t: 1758295936, i: 19 }) 318 }
db.movies.explain("allPlansExecution").aggregate([ { $search: { "text": { "path": "title", "query": "prince" }, "highlight": { "path": "title", "maxNumPassages": 1, "maxCharsToExamine": 40 } } }, { $project: { "description": 1, "_id": 0, "highlights": { "$meta": "searchHighlights" } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { path: 'title', query: 'prince' }, 8 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 9 }, 10 explain: { 11 query: { 12 type: 'TermQuery', 13 args: { path: 'title', value: 'prince' }, 14 stats: { 15 context: { 16 millisElapsed: 9.880819, 17 invocationCounts: { createWeight: Long('1'), createScorer: Long('6') } 18 }, 19 match: { 20 millisElapsed: 3.566358, 21 invocationCounts: { nextDoc: Long('28') } 22 }, 23 score: { 24 millisElapsed: 2.762687, 25 invocationCounts: { score: Long('25') } 26 } 27 } 28 }, 29 collectStats: { 30 allCollectorStats: { 31 millisElapsed: 3.238152, 32 invocationCounts: { 33 collect: Long('25'), 34 competitiveIterator: Long('3'), 35 setScorer: Long('3') 36 } 37 }, 38 facet: { collectorStats: { millisElapsed: 0 } } 39 }, 40 highlight: { 41 resolvedHighlightPaths: [ '$type:string/title' ], 42 stats: { 43 millisElapsed: 157.543967, 44 invocationCounts: { 45 executeHighlight: Long('1'), 46 setupHighlight: Long('1') 47 } 48 } 49 }, 50 resultMaterialization: { 51 stats: { 52 millisElapsed: 3.781115, 53 invocationCounts: { retrieveAndSerialize: Long('1') } 54 } 55 }, 56 metadata: { 57 <hostname>.mongodb.netmongotVersion: '1.42.0', 58 mongotHostName: '<hostname>.mongodb.net', 59 indexName: 'default', 60 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 61 totalLuceneDocs: 21349 62 }, 63 resourceUsage: { 64 majorFaults: Long('42'), 65 minorFaults: Long('167'), 66 userTimeMs: Long('50'), 67 systemTimeMs: Long('0'), 68 maxReportingThreads: 1, 69 numBatches: 1 70 } 71 }, 72 requiresSearchMetaCursor: false, 73 internalMongotBatchSizeHistory: [ Long('108') ] 74 }, 75 nReturned: Long('25'), 76 executionTimeMillisEstimate: Long('0') 77 }, 78 { 79 '$_internalSearchIdLookup': { 80 subPipeline: [ 81 { '$match': { _id: { '$eq': '_id placeholder' } } } 82 ], 83 totalDocsExamined: Long('25'), 84 totalKeysExamined: Long('25'), 85 numDocsFilteredByIdLookup: Long('0') 86 }, 87 nReturned: Long('25'), 88 executionTimeMillisEstimate: Long('1') 89 }, 90 { 91 '$project': { 92 description: true, 93 highlights: { '$meta': 'searchHighlights' }, 94 _id: false 95 }, 96 nReturned: Long('25'), 97 executionTimeMillisEstimate: Long('1') 98 } 99 ], 100 queryShapeHash: 'D08444272924C1E04A6E99D0CD4BF82FD929893862B3356F79EC18BBD1F0EF0C', 101 serverInfo: { 102 host: '<hostname>.mongodb.net', 103 port: 27017, 104 version: '8.2.0', 105 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 106 }, 107 serverParameters: { 108 internalQueryFacetBufferSizeBytes: 104857600, 109 internalQueryFacetMaxOutputDocSizeBytes: 104857600, 110 internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, 111 internalDocumentSourceGroupMaxMemoryBytes: 104857600, 112 internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, 113 internalQueryProhibitBlockingMergeOnMongoS: 0, 114 internalQueryMaxAddToSetBytes: 104857600, 115 internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, 116 internalQueryFrameworkControl: 'trySbeRestricted', 117 internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 118 }, 119 command: { 120 aggregate: 'movies', 121 pipeline: [ 122 { 123 '$search': { 124 text: { path: 'title', query: 'prince' }, 125 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 126 } 127 }, 128 { 129 '$project': { 130 description: 1, 131 _id: 0, 132 highlights: { '$meta': 'searchHighlights' } 133 } 134 } 135 ], 136 cursor: {}, 137 '$db': 'sample_mflix' 138 }, 139 ok: 1, 140 '$clusterTime': { 141 clusterTime: Timestamp({ t: 1758302099, i: 1 }), 142 signature: { 143 hash: Binary.createFromBase64('pUGxwCVnDOBIObmhURJQ1a1UwC8=', 0), 144 keyId: Long('7551379485140975621') 145 } 146 }, 147 operationTime: Timestamp({ t: 1758302099, i: 1 }) 148 }
db.movies.explain("allPlansExecution").aggregate([ { "$searchMeta": { "facet": { "operator": { "near": { "path": "released", "origin": ISODate("1921-11-01T00:00:00.000+00:00"), "pivot": 7776000000 } }, "facets": { "genresFacet": { "type": "string", "path": "genres" }, "yearFacet" : { "type" : "number", "path" : "year", "boundaries" : [1910,1920,1930,1940] } } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$searchMeta': { 6 mongotQuery: { 7 facet: { 8 operator: { 9 near: { 10 path: 'released', 11 origin: ISODate('1921-11-01T00:00:00.000Z'), 12 pivot: 7776000000 13 } 14 }, 15 facets: { 16 genresFacet: { type: 'string', path: 'genres' }, 17 yearFacet: { 18 type: 'number', 19 path: 'year', 20 boundaries: [ 1910, 1920, 1930, 1940 ] 21 } 22 } 23 } 24 }, 25 explain: { 26 query: { 27 type: 'LongDistanceFeatureQuery', 28 args: {}, 29 stats: { 30 context: { 31 millisElapsed: 4.141763, 32 invocationCounts: { createWeight: Long('1'), createScorer: Long('6') } 33 }, 34 match: { 35 millisElapsed: 24.986327, 36 invocationCounts: { nextDoc: Long('20881') } 37 }, 38 score: { 39 millisElapsed: 33.324657, 40 invocationCounts: { score: Long('20878') } 41 } 42 } 43 }, 44 collectStats: { 45 allCollectorStats: { 46 millisElapsed: 72.243101, 47 invocationCounts: { 48 collect: Long('20878'), 49 competitiveIterator: Long('3'), 50 setScorer: Long('3') 51 } 52 }, 53 facet: { 54 collectorStats: { 55 millisElapsed: 10.424621, 56 invocationCounts: { collect: Long('20878'), setScorer: Long('3') } 57 }, 58 createCountsStats: { 59 millisElapsed: 60.095261, 60 invocationCounts: { generateFacetCounts: Long('2') } 61 }, 62 stringFacetCardinalities: { genresFacet: { queried: 10, total: 25 } } 63 } 64 }, 65 resultMaterialization: { 66 stats: { 67 millisElapsed: 13.764287, 68 invocationCounts: { retrieveAndSerialize: Long('1') } 69 } 70 }, 71 metadata: { 72 <hostname>.mongodb.netmongotVersion: '1.42.0', 73 mongotHostName: '<hostname>.mongodb.net', 74 indexName: 'default', 75 totalLuceneDocs: 21349 76 }, 77 resourceUsage: { 78 majorFaults: Long('10'), 79 minorFaults: Long('13'), 80 userTimeMs: Long('20'), 81 systemTimeMs: Long('0'), 82 maxReportingThreads: 1, 83 numBatches: 1 84 } 85 }, 86 requiresSearchMetaCursor: true 87 }, 88 nReturned: Long('1'), 89 executionTimeMillisEstimate: Long('336') 90 } 91 ], 92 queryShapeHash: '582DB864C9BCFB96896CF1A3079CF70FAC10A9A1E19E8D66DF20A2BB40424FB5', 93 serverInfo: { 94 host: '<hostname>.mongodb.net', 95 port: 27017, 96 version: '8.2.0', 97 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 98 }, 99 serverParameters: { 100 ... 101 }, 102 command: { 103 aggregate: 'movies', 104 pipeline: [ 105 { 106 '$searchMeta': { 107 facet: { 108 operator: { 109 near: { 110 path: 'released', 111 origin: ISODate('1921-11-01T00:00:00.000Z'), 112 pivot: 7776000000 113 } 114 }, 115 facets: { 116 genresFacet: { type: 'string', path: 'genres' }, 117 yearFacet: { 118 type: 'number', 119 path: 'year', 120 boundaries: [ 1910, 1920, 1930, 1940 ] 121 } 122 } 123 } 124 } 125 } 126 ], 127 cursor: {}, 128 '$db': 'sample_mflix' 129 }, 130 ok: 1, 131 '$clusterTime': { 132 clusterTime: Timestamp({ t: 1758304279, i: 1 }), 133 signature: { 134 hash: Binary.createFromBase64('DI9+ZTogU1QxHCWId6QLcA4R4tQ=', 0), 135 keyId: Long('7551379485140975621') 136 } 137 }, 138 operationTime: Timestamp({ t: 1758304279, i: 1 }) 139 }
db.movies.explain("allPlansExecution").aggregate([ { $search: { "text": { "path": "title", "query": "yark", "fuzzy": { "maxEdits": 1, "maxExpansions": 100, } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { 8 path: 'title', 9 query: 'yark', 10 fuzzy: { maxEdits: 1, maxExpansions: 100 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [], 18 mustNot: [], 19 should: [ 20 { 21 type: 'BoostQuery', 22 args: { 23 query: { 24 type: 'TermQuery', 25 args: { path: 'title', value: 'mark' }, 26 stats: { 27 context: { millisElapsed: 0 }, 28 match: { millisElapsed: 0 }, 29 score: { millisElapsed: 0 } 30 } 31 }, 32 boost: 0.75 33 }, 34 stats: { 35 context: { 36 millisElapsed: 0.164466, 37 invocationCounts: { 38 createWeight: Long('2'), 39 createScorer: Long('18') 40 } 41 }, 42 match: { 43 millisElapsed: 0.055889, 44 invocationCounts: { nextDoc: Long('22') } 45 }, 46 score: { 47 millisElapsed: 0.01638, 48 invocationCounts: { score: Long('16') } 49 } 50 } 51 }, 52 { 53 type: 'BoostQuery', 54 args: { 55 query: { 56 type: 'TermQuery', 57 args: { path: 'title', value: 'yard' }, 58 stats: { 59 context: { millisElapsed: 0 }, 60 match: { millisElapsed: 0 }, 61 score: { millisElapsed: 0 } 62 } 63 }, 64 boost: 0.75 65 }, 66 stats: { 67 context: { 68 millisElapsed: 0.109841, 69 invocationCounts: { 70 createWeight: Long('2'), 71 createScorer: Long('14') 72 } 73 }, 74 match: { 75 millisElapsed: 0.009747, 76 invocationCounts: { nextDoc: Long('10') } 77 }, 78 score: { 79 millisElapsed: 0.005449, 80 invocationCounts: { score: Long('6') } 81 } 82 } 83 }, 84 { 85 type: 'BoostQuery', 86 args: { 87 query: { 88 type: 'TermQuery', 89 args: { path: 'title', value: 'york' }, 90 stats: { 91 context: { millisElapsed: 0 }, 92 match: { millisElapsed: 0 }, 93 score: { millisElapsed: 0 } 94 } 95 }, 96 boost: 0.75 97 }, 98 stats: { 99 context: { 100 millisElapsed: 0.140144, 101 invocationCounts: { 102 createWeight: Long('2'), 103 createScorer: Long('18') 104 } 105 }, 106 match: { 107 millisElapsed: 0.058885, 108 invocationCounts: { nextDoc: Long('62') } 109 }, 110 score: { 111 millisElapsed: 0.877508, 112 invocationCounts: { score: Long('56') } 113 } 114 } 115 }, 116 { 117 type: 'BoostQuery', 118 args: { 119 query: { 120 type: 'TermQuery', 121 args: { path: 'title', value: 'ark' }, 122 stats: { 123 context: { millisElapsed: 0 }, 124 match: { millisElapsed: 0 }, 125 score: { millisElapsed: 0 } 126 } 127 }, 128 boost: 0.6666666269302368 129 }, 130 stats: { 131 context: { 132 millisElapsed: 0.26056, 133 invocationCounts: { 134 createWeight: Long('2'), 135 createScorer: Long('10') 136 } 137 }, 138 match: { 139 millisElapsed: 1.028141, 140 invocationCounts: { nextDoc: Long('6') } 141 }, 142 score: { 143 millisElapsed: 0.004226, 144 invocationCounts: { score: Long('4') } 145 } 146 } 147 }, 148 { 149 type: 'BoostQuery', 150 args: { 151 query: { 152 type: 'TermQuery', 153 args: { path: 'title', value: 'dark' }, 154 stats: { 155 context: { millisElapsed: 0 }, 156 match: { millisElapsed: 0 }, 157 score: { millisElapsed: 0 } 158 } 159 }, 160 boost: 0.75 161 }, 162 stats: { 163 context: { 164 millisElapsed: 0.3029, 165 invocationCounts: { 166 createWeight: Long('2'), 167 createScorer: Long('18') 168 } 169 }, 170 match: { 171 millisElapsed: 2.294511, 172 invocationCounts: { nextDoc: Long('172') } 173 }, 174 score: { 175 millisElapsed: 1.806661, 176 invocationCounts: { score: Long('166') } 177 } 178 } 179 }, 180 { 181 type: 'BoostQuery', 182 args: { 183 query: { 184 type: 'TermQuery', 185 args: { path: 'title', value: 'park' }, 186 stats: { 187 context: { millisElapsed: 0 }, 188 match: { millisElapsed: 0 }, 189 score: { millisElapsed: 0 } 190 } 191 }, 192 boost: 0.75 193 }, 194 stats: { 195 context: { 196 millisElapsed: 0.154143, 197 invocationCounts: { 198 createWeight: Long('2'), 199 createScorer: Long('18') 200 } 201 }, 202 match: { 203 millisElapsed: 0.052283, 204 invocationCounts: { nextDoc: Long('60') } 205 }, 206 score: { 207 millisElapsed: 0.050278, 208 invocationCounts: { score: Long('54') } 209 } 210 } 211 } 212 ], 213 filter: [], 214 minimumShouldMatch: 0 215 }, 216 stats: { 217 context: { 218 millisElapsed: 2.024454, 219 invocationCounts: { createWeight: Long('2'), createScorer: Long('12') } 220 }, 221 match: { 222 millisElapsed: 4.020593, 223 invocationCounts: { nextDoc: Long('308') } 224 }, 225 score: { 226 millisElapsed: 3.181962, 227 invocationCounts: { score: Long('302') } 228 } 229 } 230 }, 231 collectStats: { 232 allCollectorStats: { 233 millisElapsed: 4.062801, 234 invocationCounts: { 235 collect: Long('302'), 236 competitiveIterator: Long('6'), 237 setScorer: Long('6') 238 } 239 }, 240 facet: { collectorStats: { millisElapsed: 0 } } 241 }, 242 resultMaterialization: { 243 stats: { 244 millisElapsed: 127.205476, 245 invocationCounts: { retrieveAndSerialize: Long('2') } 246 } 247 }, 248 metadata: { 249 <hostname>.mongodb.netmongotVersion: '1.42.0', 250 mongotHostName: '<hostname>.mongodb.net', 251 indexName: 'default', 252 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 253 totalLuceneDocs: 21349 254 }, 255 resourceUsage: { 256 majorFaults: Long('100'), 257 minorFaults: Long('31'), 258 userTimeMs: Long('20'), 259 systemTimeMs: Long('10'), 260 maxReportingThreads: 1, 261 numBatches: 2 262 } 263 }, 264 requiresSearchMetaCursor: false, 265 internalMongotBatchSizeHistory: [ Long('108'), Long('162') ] 266 }, 267 nReturned: Long('151'), 268 executionTimeMillisEstimate: Long('57') 269 }, 270 { 271 '$_internalSearchIdLookup': { 272 subPipeline: [ 273 { '$match': { _id: { '$eq': '_id placeholder' } } } 274 ], 275 totalDocsExamined: Long('151'), 276 totalKeysExamined: Long('151'), 277 numDocsFilteredByIdLookup: Long('0') 278 }, 279 nReturned: Long('151'), 280 executionTimeMillisEstimate: Long('64') 281 } 282 ], 283 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 284 serverInfo: { 285 host: '<hostname>.mongodb.net', 286 port: 27017, 287 version: '8.2.0', 288 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 289 }, 290 serverParameters: { 291 ... 292 }, 293 command: { 294 aggregate: 'movies', 295 pipeline: [ 296 { 297 '$search': { 298 text: { 299 path: 'title', 300 query: 'yark', 301 fuzzy: { maxEdits: 1, maxExpansions: 100 } 302 } 303 } 304 } 305 ], 306 cursor: {}, 307 '$db': 'sample_mflix' 308 }, 309 ok: 1, 310 '$clusterTime': { 311 clusterTime: Timestamp({ t: 1758302299, i: 1 }), 312 signature: { 313 hash: Binary.createFromBase64('pCKOPlBY/K4IObOkqDlOSnbRqw0=', 0), 314 keyId: Long('7551379485140975621') 315 } 316 }, 317 operationTime: Timestamp({ t: 1758302299, i: 1 }) 318 }
queryPlanner
次の例では、さまざまな演算子を使用して、title フィールドを queryPlanner 冗長モードでクエリします。
db.movies.explain("queryPlanner").aggregate([ { $search: { "text": { "path": "title", "query": "yark", "fuzzy": { "maxEdits": 1, "maxExpansions": 100, } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { 8 path: 'title', 9 query: 'yark', 10 fuzzy: { maxEdits: 1, maxExpansions: 100 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [], 18 mustNot: [], 19 should: [ 20 { 21 type: 'BoostQuery', 22 args: { 23 query: { 24 type: 'TermQuery', 25 args: { path: 'title', value: 'park' } 26 }, 27 boost: 0.75 28 } 29 }, 30 { 31 type: 'BoostQuery', 32 args: { 33 query: { 34 type: 'TermQuery', 35 args: { path: 'title', value: 'york' } 36 }, 37 boost: 0.75 38 } 39 }, 40 { 41 type: 'BoostQuery', 42 args: { 43 query: { 44 type: 'TermQuery', 45 args: { path: 'title', value: 'dark' } 46 }, 47 boost: 0.75 48 } 49 }, 50 { 51 type: 'BoostQuery', 52 args: { 53 query: { 54 type: 'TermQuery', 55 args: { path: 'title', value: 'mark' } 56 }, 57 boost: 0.75 58 } 59 }, 60 { 61 type: 'BoostQuery', 62 args: { 63 query: { 64 type: 'TermQuery', 65 args: { path: 'title', value: 'yard' } 66 }, 67 boost: 0.75 68 } 69 }, 70 { 71 type: 'BoostQuery', 72 args: { 73 query: { 74 type: 'TermQuery', 75 args: { path: 'title', value: 'ark' } 76 }, 77 boost: 0.6666666269302368 78 } 79 } 80 ], 81 filter: [], 82 minimumShouldMatch: 0 83 } 84 }, 85 metadata: { 86 <hostname>.mongodb.netmongotVersion: '1.42.0', 87 mongotHostName: '<hostname>.mongodb.net', 88 indexName: 'default', 89 totalLuceneDocs: 21349 90 } 91 }, 92 requiresSearchMetaCursor: false 93 } 94 }, 95 { 96 '$_internalSearchIdLookup': { 97 subPipeline: [ 98 { '$match': { _id: { '$eq': '_id placeholder' } } } 99 ] 100 } 101 } 102 ], 103 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 104 serverInfo: { 105 host: '<hostname>.mongodb.net', 106 port: 27017, 107 version: '8.2.0', 108 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 109 }, 110 serverParameters: { 111 ... 112 }, 113 command: { 114 aggregate: 'movies', 115 pipeline: [ 116 { 117 '$search': { 118 text: { 119 path: 'title', 120 query: 'yark', 121 fuzzy: { maxEdits: 1, maxExpansions: 100 } 122 } 123 } 124 } 125 ], 126 cursor: {}, 127 '$db': 'sample_mflix' 128 }, 129 ok: 1, 130 '$clusterTime': { 131 clusterTime: Timestamp({ t: 1758305729, i: 1 }), 132 signature: { 133 hash: Binary.createFromBase64('IUnIrXR/VeUrj1cGgyEFlkoQKAM=', 0), 134 keyId: Long('7551379485140975621') 135 } 136 }, 137 operationTime: Timestamp({ t: 1758305729, i: 1 }) 138 }
db.movies.explain("queryPlanner").aggregate([ { $search: { "text": { "path": "title", "query": "prince" }, "highlight": { "path": "title", "maxNumPassages": 1, "maxCharsToExamine": 40 } } }, { $project: { "description": 1, "_id": 0, "highlights": { "$meta": "searchHighlights" } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 text: { path: 'title', query: 'prince' }, 8 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 9 }, 10 explain: { 11 query: { 12 type: 'TermQuery', 13 args: { path: 'title', value: 'prince' } 14 }, 15 highlight: { resolvedHighlightPaths: [ '$type:string/title' ] }, 16 metadata: { 17 <hostname>.mongodb.netmongotVersion: '1.42.0', 18 mongotHostName: '<hostname>.mongodb.net', 19 indexName: 'default', 20 totalLuceneDocs: 21349 21 } 22 }, 23 requiresSearchMetaCursor: false 24 } 25 }, 26 { 27 '$_internalSearchIdLookup': { 28 subPipeline: [ 29 { '$match': { _id: { '$eq': '_id placeholder' } } } 30 ] 31 } 32 }, 33 { 34 '$project': { 35 description: true, 36 highlights: { '$meta': 'searchHighlights' }, 37 _id: false 38 } 39 } 40 ], 41 queryShapeHash: 'D08444272924C1E04A6E99D0CD4BF82FD929893862B3356F79EC18BBD1F0EF0C', 42 serverInfo: { 43 host: '<hostname>.mongodb.net', 44 port: 27017, 45 version: '8.2.0', 46 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 47 }, 48 serverParameters: { 49 ... 50 }, 51 command: { 52 aggregate: 'movies', 53 pipeline: [ 54 { 55 '$search': { 56 text: { path: 'title', query: 'prince' }, 57 highlight: { path: 'title', maxNumPassages: 1, maxCharsToExamine: 40 } 58 } 59 }, 60 { 61 '$project': { 62 description: 1, 63 _id: 0, 64 highlights: { '$meta': 'searchHighlights' } 65 } 66 } 67 ], 68 cursor: {}, 69 '$db': 'sample_mflix' 70 }, 71 ok: 1, 72 '$clusterTime': { 73 clusterTime: Timestamp({ t: 1758305809, i: 1 }), 74 signature: { 75 hash: Binary.createFromBase64('R7wN4/xS0eg0XFd23xeo/+hMPBY=', 0), 76 keyId: Long('7551379485140975621') 77 } 78 }, 79 operationTime: Timestamp({ t: 1758305809, i: 1 }) 80 }
db.movies.explain("queryPlanner").aggregate([ { "$searchMeta": { "facet": { "operator": { "near": { "path": "released", "origin": ISODate("1921-11-01T00:00:00.000+00:00"), "pivot": 7776000000 } }, "facets": { "genresFacet": { "type": "string", "path": "genres" }, "yearFacet" : { "type" : "number", "path" : "year", "boundaries" : [1910,1920,1930,1940] } } } } } ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$searchMeta': { 6 mongotQuery: { 7 facet: { 8 operator: { 9 near: { 10 path: 'released', 11 origin: ISODate('1921-11-01T00:00:00.000Z'), 12 pivot: 7776000000 13 } 14 }, 15 facets: { 16 genresFacet: { type: 'string', path: 'genres' }, 17 yearFacet: { 18 type: 'number', 19 path: 'year', 20 boundaries: [ 1910, 1920, 1930, 1940 ] 21 } 22 } 23 } 24 }, 25 explain: { 26 query: { type: 'LongDistanceFeatureQuery', args: {} }, 27 collectStats: { 28 facet: { 29 stringFacetCardinalities: { genresFacet: { queried: 10, total: 25 } } 30 } 31 }, 32 metadata: { 33 <hostname>.mongodb.netmongotVersion: '1.42.0', 34 mongotHostName: '<hostname>.mongodb.net', 35 indexName: 'default', 36 totalLuceneDocs: 21349 37 } 38 }, 39 requiresSearchMetaCursor: true 40 } 41 } 42 ], 43 queryShapeHash: '582DB864C9BCFB96896CF1A3079CF70FAC10A9A1E19E8D66DF20A2BB40424FB5', 44 serverInfo: { 45 host: '<hostname>.mongodb.net', 46 port: 27017, 47 version: '8.2.0', 48 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 49 }, 50 serverParameters: { 51 ... 52 }, 53 command: { 54 aggregate: 'movies', 55 pipeline: [ 56 { 57 '$searchMeta': { 58 facet: { 59 operator: { 60 near: { 61 path: 'released', 62 origin: ISODate('1921-11-01T00:00:00.000Z'), 63 pivot: 7776000000 64 } 65 }, 66 facets: { 67 genresFacet: { type: 'string', path: 'genres' }, 68 yearFacet: { 69 type: 'number', 70 path: 'year', 71 boundaries: [ 1910, 1920, 1930, 1940 ] 72 } 73 } 74 } 75 } 76 } 77 ], 78 cursor: {}, 79 '$db': 'sample_mflix' 80 }, 81 ok: 1, 82 '$clusterTime': { 83 clusterTime: Timestamp({ t: 1758305859, i: 1 }), 84 signature: { 85 hash: Binary.createFromBase64('8Zm16MEkzHnPpP9uLJK1YlT7a3o=', 0), 86 keyId: Long('7551379485140975621') 87 } 88 }, 89 operationTime: Timestamp({ t: 1758305859, i: 1 }) 90 }
パイプラインで$limitステージを指定するクエリの場合、 explainの結果にはmongotDocsRequestedメトリクスが含まれます。これは、 mongodがmongotからリクエストしたドキュメントの数を示します。
例
{ "mongotQuery": {}, "explain": {}, "limit": <int>, "sortSpec": {}, "mongotDocsRequested": <int>, }
executionStats
次の例では、autocomplete を使用して、title フィールドを executionStats 冗長モードでクエリします。
1 db.movies.explain("executionStats").aggregate([ 2 { 3 "$search": { 4 "autocomplete": { 5 "path": "title", 6 "query": "pre", 7 "fuzzy": { 8 "maxEdits": 1, 9 "prefixLength": 1, 10 "maxExpansions": 256 11 } 12 } 13 } 14 } 15 ])
1 { 2 explainVersion: '1', 3 stages: [ 4 { 5 '$_internalSearchMongotRemote': { 6 mongotQuery: { 7 autocomplete: { 8 path: 'title', 9 query: 'pre', 10 fuzzy: { maxEdits: 1, prefixLength: 1, maxExpansions: 256 } 11 } 12 }, 13 explain: { 14 query: { 15 type: 'BooleanQuery', 16 args: { 17 must: [ 18 { 19 type: 'MultiTermQueryConstantScoreBlendedWrapper', 20 args: { 21 queries: [ 22 { 23 type: 'DefaultQuery', 24 args: { queryType: 'AutomatonQuery' }, 25 stats: { 26 context: { millisElapsed: 0 }, 27 match: { millisElapsed: 0 }, 28 score: { millisElapsed: 0 } 29 } 30 } 31 ] 32 }, 33 stats: { 34 context: { 35 millisElapsed: 12.517877, 36 invocationCounts: { 37 createWeight: Long('4'), 38 createScorer: Long('48') 39 } 40 }, 41 match: { 42 millisElapsed: 0.970794, 43 invocationCounts: { nextDoc: Long('2436') } 44 }, 45 score: { 46 millisElapsed: 0.638731, 47 invocationCounts: { score: Long('2420') } 48 } 49 } 50 } 51 ], 52 mustNot: [], 53 should: [ 54 { 55 type: 'TermQuery', 56 args: { path: 'title', value: 'pre' }, 57 stats: { 58 context: { 59 millisElapsed: 1.481341, 60 invocationCounts: { 61 createWeight: Long('4'), 62 createScorer: Long('16') 63 } 64 }, 65 match: { millisElapsed: 0 }, 66 score: { millisElapsed: 0 } 67 } 68 } 69 ], 70 filter: [], 71 minimumShouldMatch: 0 72 }, 73 stats: { 74 context: { 75 millisElapsed: 15.118651, 76 invocationCounts: { createWeight: Long('4'), createScorer: Long('32') } 77 }, 78 match: { 79 millisElapsed: 1.923822, 80 invocationCounts: { nextDoc: Long('2436') } 81 }, 82 score: { 83 millisElapsed: 1.954216, 84 invocationCounts: { score: Long('2420') } 85 } 86 } 87 }, 88 collectStats: { 89 allCollectorStats: { 90 millisElapsed: 4.189904, 91 invocationCounts: { 92 collect: Long('2420'), 93 competitiveIterator: Long('16'), 94 setScorer: Long('16') 95 } 96 }, 97 facet: { collectorStats: { millisElapsed: 0 } } 98 }, 99 resultMaterialization: { 100 stats: { 101 millisElapsed: 21.876621, 102 invocationCounts: { retrieveAndSerialize: Long('4') } 103 } 104 }, 105 metadata: { 106 <hostname>.mongodb.netmongotVersion: '1.42.0', 107 mongotHostName: '<hostname>.mongodb.net', 108 indexName: 'default', 109 cursorOptions: { batchSize: 108, requiresSearchSequenceToken: false }, 110 totalLuceneDocs: 21349 111 }, 112 resourceUsage: { 113 majorFaults: Long('2'), 114 minorFaults: Long('242'), 115 userTimeMs: Long('40'), 116 systemTimeMs: Long('0'), 117 maxReportingThreads: 1, 118 numBatches: 4 119 } 120 }, 121 requiresSearchMetaCursor: false, 122 internalMongotBatchSizeHistory: [ Long('108'), Long('162'), Long('243'), Long('365') ] 123 }, 124 nReturned: Long('605'), 125 executionTimeMillisEstimate: Long('44') 126 }, 127 { 128 '$_internalSearchIdLookup': { 129 subPipeline: [ 130 { '$match': { _id: { '$eq': '_id placeholder' } } } 131 ], 132 totalDocsExamined: Long('605'), 133 totalKeysExamined: Long('605'), 134 numDocsFilteredByIdLookup: Long('0') 135 }, 136 nReturned: Long('605'), 137 executionTimeMillisEstimate: Long('91') 138 } 139 ], 140 queryShapeHash: '6FD3791F785FA329D4ECD1171E0E5AF6772C18F5F0A7A50FC416D080A93C8CB7', 141 serverInfo: { 142 host: '<hostname>.mongodb.net', 143 port: 27017, 144 version: '8.2.0', 145 gitVersion: '13e629eeccd63f00d17568fc4c12b7530fa34b54' 146 }, 147 serverParameters: { 148 ... 149 }, 150 command: { 151 aggregate: 'movies', 152 pipeline: [ 153 { 154 '$search': { 155 autocomplete: { 156 path: 'title', 157 query: 'pre', 158 fuzzy: { maxEdits: 1, prefixLength: 1, maxExpansions: 256 } 159 } 160 } 161 } 162 ], 163 cursor: {}, 164 '$db': 'sample_mflix' 165 }, 166 ok: 1, 167 '$clusterTime': { 168 clusterTime: Timestamp({ t: 1758306209, i: 1 }), 169 signature: { 170 hash: Binary.createFromBase64('MIipFR5NAfl728L6h4ueQeZBLGM=', 0), 171 keyId: Long('7551379485140975621') 172 } 173 }, 174 operationTime: Timestamp({ t: 1758306209, i: 1 }) 175 }
explain 応答要素の詳細については、「Explain の結果」を参照してください。