Puede integrar MongoDB Vector Search con LlamaIndex Para implementar la generación aumentada por recuperación (RAG) en su aplicación LLM. Este tutorial muestra cómo empezar a usar MongoDB Vector Search con LlamaIndex para realizar búsquedas semánticas en sus datos y crear una... Implementación deRAG. En concreto, se realizan las siguientes acciones:
Configura el entorno.
Almacenar datos personalizados en MongoDB.
Cree un índice de búsqueda vectorial MongoDB en sus datos.
Ejecuta las siguientes consultas de búsqueda vectorial:
Búsqueda semántica.
Búsqueda semántica con prefiltrado de metadatos.
Implementa RAG usando la búsqueda vectorial de MongoDB para responder preguntas sobre tus datos.
Trabaja con una versión ejecutable de este tutorial como un cuaderno interactivo de Python.
Segundo plano
LlamaIndex es un framework de código abierto diseñado para simplificar la conexión de fuentes de datos personalizadas a LLM.Ofrece diversas herramientas, como conectores de datos, índices y motores de consulta, para facilitar la carga y preparación de incrustaciones vectoriales para aplicaciones RAG.
Al integrar MongoDB Vector Search con LlamaIndex, puede usar MongoDB como base de datos vectorial y usar MongoDB Vector Search para implementar RAG recuperando documentos semánticamente similares de sus datos. Para obtener más información sobre RAG, consulte Recuperación-Generación Aumentada (RAG) con MongoDB.
Procedimiento
Requisitos previos
Para completar este tutorial, debes tener lo siguiente:
Uno de los siguientes tipos de clúster de MongoDB:
Un clúster de Atlas que ejecuta la versión 6.0.11, 7.0.2 o posterior de MongoDB. Asegúrese de que su dirección IP esté incluida en la lista de acceso de su proyecto Atlas.
Una implementación local de Atlas creada usando Atlas CLI. Para obtener más información, consulta Crear una Implementación local de Atlas.
Un clúster de MongoDB Community o Enterprise con Search y Vector Search instalados.
Una llave de API de OpenAI. Debes tener una cuenta de OpenAI con créditos disponibles para las solicitudes de API. Para obtener más información sobre cómo registrar una cuenta de OpenAI, consulta el sitio web de la API de OpenAI.
Una clave API de Voyage AI. Para crear una clave API, consulta Claves API de modelos.
Un entorno para ejecutar cuadernos interactivos de Python como Colab.
Configurar el entorno
Configura el entorno para este tutorial. Crea un cuaderno interactivo de Python guardando un archivo con el .ipynb Extensión. Este cuaderno te permite ejecutar fragmentos de código Python individualmente y lo usarás para ejecutar el código en este tutorial.
Para configurar el entorno de su portátil:
Instala e importa las dependencias.
Ejecuta el siguiente comando:
pip install --quiet --upgrade llama-index llama-index-vector-stores-mongodb llama-index-llms-openai llama-index-embeddings-voyageai pymongo
Luego, ejecute el siguiente código para importar los paquetes requeridos:
import os, pymongo, pprint from pymongo.operations import SearchIndexModel from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext from llama_index.core.settings import Settings from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.vector_stores import MetadataFilter, MetadataFilters, ExactMatchFilter, FilterOperator from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.embeddings.voyageai import VoyageEmbedding from llama_index.llms.openai import OpenAI from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
Definir variables de entorno.
Ejecute el siguiente código, reemplazando los marcadores de posición con los siguientes valores:
Su clave API de OpenAI.
Su clave API de Voyage AI.
La cadena de conexión SRV de su clúster MongoDB.
os.environ["OPENAI_API_KEY"] = "<openai-api-key>" os.environ["VOYAGEAI_API_KEY"] = "<voyageai-api-key>" MONGODB_URI = "<connection-string>"
Nota
Se debe sustituir <connection-string> por la cadena de conexión del clúster Atlas o de la implementación local de Atlas.
Su cadena de conexión debe usar el siguiente formato:
mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
Para obtener más información,consulte Conectarse a un clúster a través de bibliotecas de cliente.
Su cadena de conexión debe usar el siguiente formato:
mongodb://localhost:<port-number>/?directConnection=true
Para obtener más información, consulta Cadenas de conexión.
Configure la configuración de LlamaIndex.
Ejecute el siguiente código para configurar los ajustes específicos de LlamaIndex. Estos ajustes especifican lo siguiente:
voyage-3-largecomo el modelo de incrustación utilizado por su aplicación para generar incrustaciones vectoriales a partir de sus datos.OpenAI como el LLM utilizado por su aplicación para responder preguntas sobre sus datos.
Tamaño de fragmento y superposición para personalizar cómo LlamaIndex particiona sus datos para su almacenamiento.
from llama_index.embeddings.voyageai import VoyageEmbedding embed_model= VoyageEmbedding( voyage_api_key = os.environ["VOYAGEAI_API_KEY"], model_name = "voyage-3-large", ) Settings.llm = OpenAI() Settings.embed_model = embed_model Settings.chunk_size = 100 Settings.chunk_overlap = 10
Utilice MongoDB como almacén de vectores
Luego, cargue datos personalizados en MongoDB e instancie su clúster de MongoDB como una base de datos vectorial, también llamada almacén vectorial. Copie y pegue los siguientes fragmentos de código en su notebook.
Cargue los datos de muestra.
Para este tutorial, utilizará un documento PDF de acceso público que contiene un informe reciente de ganancias de MongoDB como fuente de datos para su almacén de vectores. Este documento describe los resultados financieros de MongoDB correspondientes al cuarto trimestre y al año 2025 fiscal.
Para cargar los datos de muestra, ejecute el siguiente fragmento de código. Hace lo siguiente:
Crea un nuevo directorio llamado
data.Recupera el PDF de la URL especificada y lo guarda como un archivo en el directorio.
Utiliza el
SimpleDirectoryReaderconector de datos para extraer texto sin procesar y metadatos del archivo. También formatea los datos en documentos.
# Load the sample data from urllib.request import urlretrieve urlretrieve("https://investors.mongodb.com/node/13176/pdf", "mongodb-earnings-report.pdf") sample_data = SimpleDirectoryReader(input_files=["mongodb-earnings-report.pdf"]).load_data() # Print the first document sample_data[0]
Document(id_='62b7cace-30c0-4687-9d87-e178547ae357', embedding=None, metadata={'page_label': '1', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, metadata_template='{key}: {value}', metadata_separator='\n', text_resource=MediaResource(embeddings=None, data=None, text='MongoDB, Inc. Announces Fourth Quarter and Full Year Fiscal 2025 Financial Results\nMarch 5, 2025\nFourth Quarter Fiscal 2025 Total Revenue of $548.4 million, up 20% Year-over-Year\nFull Year Fiscal 2025 Total Revenue of $2.01 billion, up 19% Year-over-Year\nContinued Strong Customer Growth with Over 54,500 Customers as of January 31, 2025\nMongoDB Atlas Revenue up 24% Year-over-Year; 71% of Total Q4 Revenue\nNEW YORK , March 5, 2025 /PRNewswire/ -- MongoDB, Inc. (NASDAQ: MDB) today announced its financial results for the fourth quarter and fiscal\nyear ended January 31, 2025.\n\xa0\n \xa0\n"MongoDB delivered a strong end to fiscal 2025 with 24% Atlas revenue growth and significant margin expansion. Atlas consumption in the quarter\nwas better than expected and we continue to see good performance in new workload wins due to the flexibility, scalability and performance of the\nMongoDB platform. In fiscal year 2026 we expect to see stable consumption growth in Atlas, our main growth driver," said Dev Ittycheria, President\nand Chief Executive Officer of MongoDB .\n"Looking ahead, we remain incredibly excited about our long-term growth opportunity. MongoDB removes the constraints of legacy databases,\nenabling businesses to innovate at AI speed with our flexible document model and seamless scalability. Following the Voyage AI acquisition, we\ncombine real-time data, sophisticated embedding and retrieval models and semantic search directly in the database, simplifying the development of\ntrustworthy AI-powered apps."\nFourth Quarter Fiscal 2025 Financial Highlights\nRevenue: Total revenue was $548.4 million for the fourth quarter of fiscal 2025, an increase of 20% year-over-year.\nSubscription revenue was $531.0 million, an increase of 19% year-over-year, and services revenue was $17.4 million, an\nincrease of 34% year-over-year.\nGross Profit: Gross profit was $399.4 million for the fourth quarter of fiscal 2025, representing a 73% gross margin\ncompared to 75% in the year-ago period. Non-GAAP gross profit was $411.7 million, representing a 75% non-GAAP gross\nmargin, compared to a non-GAAP gross margin of 77% in the year-ago period.\nLoss from Operations: Loss from operations was $18.6 million for the fourth quarter of fiscal 2025, compared to a loss\nfrom operations of $71.0 million in the year-ago period. Non-GAAP income from operations was $112.5 million, compared\nto non-GAAP income from operations of $69.2 million in the year-ago period.\nNet Income (Loss): Net income was $15.8 million, or $0.20 per share, based on 77.6 million weighted-average shares\noutstanding, for the fourth quarter of fiscal 2025. This compares to a net loss of $55.5 million, or $0.77 per share, in the\nyear-ago period. Non-GAAP net income was $108.4 million, or $1.28 per share, based on 84.6 million fully diluted\nweighted-average shares outstanding. This compares to a non-GAAP net income of $71.1 million, or $0.86 per share, in\nthe year-ago period.\nCash Flow: As of January 31, 2025, MongoDB had $2.3 billion in cash, cash equivalents, short-term investments and\nrestricted cash. During the three months ended January 31, 2025, MongoDB generated $50.5 million of cash from\noperations, compared to $54.6 million of cash from operations in the year-ago period. MongoDB used $26.0 million of cash\nin capital expenditures and used $1.6 million of cash in principal payments of finance leases, leading to free cash flow of\n$22.9 million, compared to free cash flow of $50.5 million in the year-ago period.\nFull Year Fiscal 2025 Financial Highlights\nRevenue: Total revenue was $2.01 billion for the full year fiscal 2025, an increase of 19% year-over-year. Subscription\nrevenue was $1.94 billion, an increase of 19% year-over-year, and services revenue was $62.6 million, an increase of 12%\nyear-over-year.\nGross Profit: Gross profit was $1.47 billion for the full year fiscal 2025, representing a 73% gross margin compared to', path=None, url=None, mimetype=None), image_resource=None, audio_resource=None, video_resource=None, text_template='{metadata_str}\n\n{content}')
Instanciar el almacén de vectores.
Ejecuta el siguiente código para crear una tienda de vectores usando el método MongoDBAtlasVectorSearch, que especifica lo siguiente:
Una conexión a su clúster MongoDB.
llamaindex_db.testcomo la base de datos y colección MongoDB utilizada para almacenar los documentos.vector_indexcomo el índice a utilizar para consultar el almacén de vectores.
Luego, guarda el almacén de vectores en un contexto de almacenamiento, que es un objeto contenedor LlamaIndex que se utiliza para preparar los datos para el almacenamiento.
# Connect to your MongoDB cluster mongo_client = pymongo.MongoClient(MONGODB_URI) # Instantiate the vector store vector_store = MongoDBAtlasVectorSearch( mongo_client, db_name = "llamaindex_db", collection_name = "test", vector_index_name = "vector_index" ) vector_store_context = StorageContext.from_defaults(vector_store=vector_store)
Almacene sus datos como incrustaciones vectoriales.
Una vez cargados los datos e instanciado Atlas como almacén vectorial, genere incrustaciones vectoriales a partir de los datos y almacénelas en Atlas. Para ello, debe crear un índice de almacén vectorial. Este tipo de índice es una estructura de datos LlamaIndex que divide, incrusta y almacena los datos en el almacén vectorial.
El siguiente código utiliza el método VectorStoreIndex.from_documents para crear el índice del almacén vectorial con los datos de muestra. Convierte los datos de muestra en incrustaciones vectoriales y las almacena como documentos en la colección llamaindex_db.test del clúster de MongoDB, según lo especificado por el contexto de almacenamiento del almacén vectorial.
Nota
Este método utiliza el modelo de inserción y la configuración de fragmentos que configuró al configurar su entorno.
vector_store_index = VectorStoreIndex.from_documents( sample_data, storage_context=vector_store_context, show_progress=True )
Tip
Después de ejecutar el código de ejemplo, si usas Atlas, puedes verificar tus incrustaciones vectoriales navegando al namespace llamaindex_db.test en la Interfaz de Usuario de Atlas.
Cree el índice de búsqueda vectorial de MongoDB
Para habilitar consultas de búsqueda de vectores en su tienda de vectores, cree un índice de búsqueda de vectores de MongoDB en la colección llamaindex_db.test.
En su cuaderno, ejecute el siguiente código para crear un índice del tipo vectorSearch que indexe los siguientes campos:
embeddingcampo como tipo de vector. Elembeddingcampo contiene las incrustaciones creadas convoyage-3-largeel modelo de incrustación de VoyageAI. La definición del índice especifica las1024dimensiones del vector y mide la similitudcosinemediante.metadata.page_labelcampo como el tipo filtro para prefiltrar datos por el número de página en el PDF.
# Specify the collection for which to create the index collection = mongo_client["llamaindex_db"]["test"] # Create your index model, then create the search index search_index_model = SearchIndexModel( definition={ "fields": [ { "type": "vector", "path": "embedding", "numDimensions": 1024, "similarity": "cosine" }, { "type": "filter", "path": "metadata.page_label" } ] }, name="vector_index", type="vectorSearch" ) collection.create_search_index(model=search_index_model)
El índice debería tardar aproximadamente un minuto en crearse. Mientras se crea, el índice está en un estado de sincronización inicial. Cuando termine de crearse, se pueden empezar a realizar los query en los datos de la colección.
Requisitos previos
Para completar este tutorial, debes tener lo siguiente:
Uno de los siguientes tipos de clúster de MongoDB:
Un clúster de Atlas que ejecuta la versión 6.0.11, 7.0.2 o posterior de MongoDB. Asegúrese de que su dirección IP esté incluida en la lista de acceso de su proyecto Atlas.
Una implementación local de Atlas creada usando Atlas CLI. Para obtener más información, consulta Crear una Implementación local de Atlas.
Un clúster de MongoDB Community o Enterprise con Search y Vector Search instalados.
Una llave de API de OpenAI. Debes tener una cuenta de OpenAI con créditos disponibles para las solicitudes de API. Para obtener más información sobre cómo registrar una cuenta de OpenAI, consulta el sitio web de la API de OpenAI.
Un entorno para ejecutar cuadernos interactivos de Python como Colab.
Configurar el entorno
Configura el entorno para este tutorial. Cree un cuaderno interactivo de Python guardando un archivo con la extensión .ipynb. Este cuaderno te permite ejecutar snippets de código Python de forma individual y lo utilizarás para ejecutar el código en este tutorial.
Para configurar el entorno de su portátil:
Instala e importa las dependencias.
Ejecuta el siguiente comando:
pip install --quiet --upgrade llama-index llama-index-vector-stores-mongodb llama-index-embeddings-openai pymongo
Luego, ejecute el siguiente código para importar los paquetes requeridos:
import os, pymongo, pprint from pymongo.operations import SearchIndexModel from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext from llama_index.core.settings import Settings from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.vector_stores import MetadataFilter, MetadataFilters, ExactMatchFilter, FilterOperator from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
Definir variables de entorno.
Ejecute el siguiente código, reemplazando los marcadores de posición con los siguientes valores:
Su clave API de OpenAI.
La cadena de conexión de su clúster MongoDB.
os.environ["OPENAI_API_KEY"] = "<api-key>" MONGODB_URI = "<connection-string>"
Nota
Se debe sustituir <connection-string> por la cadena de conexión del clúster Atlas o de la implementación local de Atlas.
Su cadena de conexión debe usar el siguiente formato:
mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
Para obtener más información,consulte Conectarse a un clúster a través de bibliotecas de cliente.
Su cadena de conexión debe usar el siguiente formato:
mongodb://localhost:<port-number>/?directConnection=true
Para obtener más información, consulta Cadenas de conexión.
Configure la configuración de LlamaIndex.
Ejecute el siguiente código para configurar los ajustes específicos de LlamaIndex. Estos ajustes especifican lo siguiente:
OpenAI como el LLM utilizado por su aplicación para responder preguntas sobre sus datos.
text-embedding-ada-002como el modelo de incrustación utilizado por su aplicación para generar incrustaciones vectoriales a partir de sus datos.Tamaño de fragmento y superposición para personalizar cómo LlamaIndex particiona sus datos para su almacenamiento.
Settings.llm = OpenAI() Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002") Settings.chunk_size = 100 Settings.chunk_overlap = 10
Utilice MongoDB como almacén de vectores
Luego, cargue datos personalizados en MongoDB e instancie su clúster de MongoDB como una base de datos vectorial, también llamada almacén vectorial. Copie y pegue los siguientes fragmentos de código en su notebook.
Cargue los datos de muestra.
Para este tutorial, utilizará un documento PDF de acceso público que contiene un informe reciente de ganancias de MongoDB como fuente de datos para su almacén de vectores. Este documento describe los resultados financieros de MongoDB correspondientes al cuarto trimestre y al año 2025 fiscal.
Para cargar los datos de muestra, ejecute el siguiente fragmento de código. Hace lo siguiente:
Crea un nuevo directorio llamado
data.Recupera el PDF de la URL especificada y lo guarda como un archivo en el directorio.
Utiliza el
SimpleDirectoryReaderconector de datos para extraer texto sin procesar y metadatos del archivo. También formatea los datos en documentos.
# Load the sample data from urllib.request import urlretrieve urlretrieve("https://investors.mongodb.com/node/13176/pdf", "mongodb-earnings-report.pdf") sample_data = SimpleDirectoryReader(input_files=["./data/mongodb-earnings-report.pdf"]).load_data() # Print the first document sample_data[0]
Document(id_='62b7cace-30c0-4687-9d87-e178547ae357', embedding=None, metadata={'page_label': '1', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={}, metadata_template='{key}: {value}', metadata_separator='\n', text_resource=MediaResource(embeddings=None, data=None, text='MongoDB, Inc. Announces Fourth Quarter and Full Year Fiscal 2025 Financial Results\nMarch 5, 2025\nFourth Quarter Fiscal 2025 Total Revenue of $548.4 million, up 20% Year-over-Year\nFull Year Fiscal 2025 Total Revenue of $2.01 billion, up 19% Year-over-Year\nContinued Strong Customer Growth with Over 54,500 Customers as of January 31, 2025\nMongoDB Atlas Revenue up 24% Year-over-Year; 71% of Total Q4 Revenue\nNEW YORK , March 5, 2025 /PRNewswire/ -- MongoDB, Inc. (NASDAQ: MDB) today announced its financial results for the fourth quarter and fiscal\nyear ended January 31, 2025.\n\xa0\n \xa0\n"MongoDB delivered a strong end to fiscal 2025 with 24% Atlas revenue growth and significant margin expansion. Atlas consumption in the quarter\nwas better than expected and we continue to see good performance in new workload wins due to the flexibility, scalability and performance of the\nMongoDB platform. In fiscal year 2026 we expect to see stable consumption growth in Atlas, our main growth driver," said Dev Ittycheria, President\nand Chief Executive Officer of MongoDB .\n"Looking ahead, we remain incredibly excited about our long-term growth opportunity. MongoDB removes the constraints of legacy databases,\nenabling businesses to innovate at AI speed with our flexible document model and seamless scalability. Following the Voyage AI acquisition, we\ncombine real-time data, sophisticated embedding and retrieval models and semantic search directly in the database, simplifying the development of\ntrustworthy AI-powered apps."\nFourth Quarter Fiscal 2025 Financial Highlights\nRevenue: Total revenue was $548.4 million for the fourth quarter of fiscal 2025, an increase of 20% year-over-year.\nSubscription revenue was $531.0 million, an increase of 19% year-over-year, and services revenue was $17.4 million, an\nincrease of 34% year-over-year.\nGross Profit: Gross profit was $399.4 million for the fourth quarter of fiscal 2025, representing a 73% gross margin\ncompared to 75% in the year-ago period. Non-GAAP gross profit was $411.7 million, representing a 75% non-GAAP gross\nmargin, compared to a non-GAAP gross margin of 77% in the year-ago period.\nLoss from Operations: Loss from operations was $18.6 million for the fourth quarter of fiscal 2025, compared to a loss\nfrom operations of $71.0 million in the year-ago period. Non-GAAP income from operations was $112.5 million, compared\nto non-GAAP income from operations of $69.2 million in the year-ago period.\nNet Income (Loss): Net income was $15.8 million, or $0.20 per share, based on 77.6 million weighted-average shares\noutstanding, for the fourth quarter of fiscal 2025. This compares to a net loss of $55.5 million, or $0.77 per share, in the\nyear-ago period. Non-GAAP net income was $108.4 million, or $1.28 per share, based on 84.6 million fully diluted\nweighted-average shares outstanding. This compares to a non-GAAP net income of $71.1 million, or $0.86 per share, in\nthe year-ago period.\nCash Flow: As of January 31, 2025, MongoDB had $2.3 billion in cash, cash equivalents, short-term investments and\nrestricted cash. During the three months ended January 31, 2025, MongoDB generated $50.5 million of cash from\noperations, compared to $54.6 million of cash from operations in the year-ago period. MongoDB used $26.0 million of cash\nin capital expenditures and used $1.6 million of cash in principal payments of finance leases, leading to free cash flow of\n$22.9 million, compared to free cash flow of $50.5 million in the year-ago period.\nFull Year Fiscal 2025 Financial Highlights\nRevenue: Total revenue was $2.01 billion for the full year fiscal 2025, an increase of 19% year-over-year. Subscription\nrevenue was $1.94 billion, an increase of 19% year-over-year, and services revenue was $62.6 million, an increase of 12%\nyear-over-year.\nGross Profit: Gross profit was $1.47 billion for the full year fiscal 2025, representing a 73% gross margin compared to', path=None, url=None, mimetype=None), image_resource=None, audio_resource=None, video_resource=None, text_template='{metadata_str}\n\n{content}')
Instanciar el almacén de vectores.
Ejecuta el siguiente código para crear una tienda de vectores usando el método MongoDBAtlasVectorSearch, que especifica lo siguiente:
Una conexión a su clúster MongoDB.
llamaindex_db.testcomo la base de datos y colección MongoDB utilizada para almacenar los documentos.vector_indexcomo el índice a utilizar para consultar el almacén de vectores.
Luego, guarda el almacén de vectores en un contexto de almacenamiento, que es un objeto contenedor LlamaIndex que se utiliza para preparar los datos para el almacenamiento.
# Connect to your MongoDB cluster mongo_client = pymongo.MongoClient(MONGODB_URI) # Instantiate the vector store vector_store = MongoDBAtlasVectorSearch( mongo_client, db_name = "llamaindex_db", collection_name = "test", vector_index_name = "vector_index" ) vector_store_context = StorageContext.from_defaults(vector_store=vector_store)
Almacene sus datos como incrustaciones vectoriales.
Una vez cargados los datos e instanciado MongoDB como almacén vectorial, genere incrustaciones vectoriales a partir de los datos y almacénelas en MongoDB. Para ello, debe crear un índice de almacén vectorial. Este tipo de índice es una estructura de datos LlamaIndex que divide, incrusta y almacena los datos en el almacén vectorial.
El siguiente código utiliza el método VectorStoreIndex.from_documents para crear el índice del almacén vectorial con los datos de muestra. Convierte los datos de muestra en incrustaciones vectoriales y las almacena como documentos en la colección llamaindex_db.test del clúster de MongoDB, según lo especificado por el contexto de almacenamiento del almacén vectorial.
Nota
Este método utiliza el modelo de inserción y la configuración de fragmentos que configuró al configurar su entorno.
vector_store_index = VectorStoreIndex.from_documents( sample_data, storage_context=vector_store_context, show_progress=True )
Tip
Después de ejecutar el código de ejemplo, si usas Atlas, puedes verificar tus incrustaciones vectoriales navegando al namespace llamaindex_db.test en la Interfaz de Usuario de Atlas.
Cree el índice de búsqueda vectorial de MongoDB
Para habilitar consultas de búsqueda de vectores en su tienda de vectores, cree un índice de búsqueda de vectores de MongoDB en la colección llamaindex_db.test.
En su cuaderno, ejecute el siguiente código para crear un índice del tipo vectorSearch que indexe los siguientes campos:
embeddingcampo como tipo de vector. Elembeddingcampo contiene las incrustaciones creadas context-embedding-ada-002el modelo de incrustación de OpenAI. La definición del índice especifica las1536dimensiones del vector y mide la similitudcosinemediante.metadata.page_labelcampo como el tipo filtro para prefiltrar datos por el número de página en el PDF.
# Specify the collection for which to create the index collection = mongo_client["llamaindex_db"]["test"] # Create your index model, then create the search index search_index_model = SearchIndexModel( definition={ "fields": [ { "type": "vector", "path": "embedding", "numDimensions": 1536, "similarity": "cosine" }, { "type": "filter", "path": "metadata.page_label" } ] }, name="vector_index", type="vectorSearch" ) collection.create_search_index(model=search_index_model)
El índice debería tardar aproximadamente un minuto en crearse. Mientras se crea, el índice está en un estado de sincronización inicial. Cuando termine de crearse, se pueden empezar a realizar los query en los datos de la colección.
Ejecución de consultas de búsqueda vectorial
Una vez que MongoDB genere su índice, vuelva a su notebook y ejecute consultas de búsqueda vectorial en sus datos. Los siguientes ejemplos muestran diferentes consultas que puede ejecutar en sus datos vectorizados.
Este ejemplo realiza una búsqueda semántica básica de la cadena MongoDB Atlas security y devuelve una lista de documentos clasificados por relevancia. También especifica lo siguiente:
MongoDB Vector Search como recuperador para realizar búsquedas semánticas.
El parámetro
similarity_top_kpara devolver solo los tres documentos más relevantes.
retriever = vector_store_index.as_retriever(similarity_top_k=3) nodes = retriever.retrieve("MongoDB acquisition") for node in nodes: print(node)
Node ID: 479446ef-8a32-410d-a5e0-8650bd10d78d Text: MongoDB completed the redemption of 2026 Convertible Notes, eliminating all debt from the balance sheet. Additionally, in conjunction with the acquisition of Voyage, MongoDB is announcing a stock buyback program of $200 million, to offset the dilutive impact of the acquisition consideration. Score: 0.914 Node ID: 453137d9-8902-4fae-8d81-5f5d9b0836eb Text: "Looking ahead, we remain incredibly excited about our long-term growth opportunity. MongoDB removes the constraints of legacy databases, enabling businesses to innovate at AI speed with our flexible document model and seamless scalability. Following the Voyage AI acquisition, we combine real-time data, sophisticated embedding and retrieval mod... Score: 0.914 Node ID: f3c35db6-43e5-4da7-a297-d9b009b9d300 Text: Lombard Odier, a Swiss private bank, partnered with MongoDB to migrate and modernize its legacy banking technology systems on MongoDB with generative AI. The initiative enabled the bank to migrate code 50-60 times quicker and move applications from a legacy relational database to MongoDB 20 times faster than previous migrations. Score: 0.912
Puedes prefiltrar tus datos utilizando una expresión de coincidencia MQL que compare el campo indexado con otro valor de tu colección. Debes indexar cualquier campo de metadatos que desees filtrar como tipo filter. Para obtener más información, consulta Cómo indexar campos para la búsqueda vectorial.
Nota
Usted especificó el campo metadata.page_label como filtro cuando creó el índice para este tutorial.
Este ejemplo realiza una búsqueda semántica de la cadena MongoDB Atlas security y devuelve una lista de documentos clasificados por relevancia. También especifica lo siguiente:
MongoDB Vector Search como recuperador para realizar búsquedas semánticas.
El parámetro
similarity_top_kpara devolver solo los tres documentos más relevantes.Un filtro en el campo
metadata.page_labelpara que desde la búsqueda vectorial de MongoDB solo se busquen documentos que aparezcan en la página dos.
# Specify metadata filters metadata_filters = MetadataFilters( filters=[ExactMatchFilter(key="metadata.page_label", value="2")] ) retriever = vector_store_index.as_retriever(similarity_top_k=3, filters=metadata_filters) nodes = retriever.retrieve("MongoDB acquisition") for node in nodes: print(node)
Node ID: 479446ef-8a32-410d-a5e0-8650bd10d78d Text: MongoDB completed the redemption of 2026 Convertible Notes, eliminating all debt from the balance sheet. Additionally, in conjunction with the acquisition of Voyage, MongoDB is announcing a stock buyback program of $200 million, to offset the dilutive impact of the acquisition consideration. Score: 0.914 Node ID: f3c35db6-43e5-4da7-a297-d9b009b9d300 Text: Lombard Odier, a Swiss private bank, partnered with MongoDB to migrate and modernize its legacy banking technology systems on MongoDB with generative AI. The initiative enabled the bank to migrate code 50-60 times quicker and move applications from a legacy relational database to MongoDB 20 times faster than previous migrations. Score: 0.912 Node ID: 82a2a0c0-80b9-4a9e-a848-529b4ff8f301 Text: Fourth Quarter Fiscal 2025 and Recent Business Highlights MongoDB acquired Voyage AI, a pioneer in state-of-the-art embedding and reranking models that power next-generation AI applications. Integrating Voyage AI's technology with MongoDB will enable organizations to easily build trustworthy, AI-powered applications by offering highly accurate... Score: 0.911
Responda preguntas sobre sus datos
Esta sección muestra cómo implementar RAG en su aplicación con MongoDB Vector Search y LlamaIndex. Ahora que ha aprendido a ejecutar consultas de búsqueda vectorial para recuperar documentos semánticamente similares, ejecute el siguiente código para usar MongoDB Vector Search para recuperar documentos y un motor de consultas LlamaIndex para responder preguntas basadas en esos documentos.
Este ejemplo hace lo siguiente:
Instancia la Búsqueda Vectorial MongoDB como un recuperador de índices vectoriales, un tipo específico de recuperador para almacenes vectoriales. Incluye el parámetro
similarity_top_kpara que la búsqueda vectorial de MongoDB recupere sólo los 5 documentos más relevantes.
Crea una instancia del motor de consulta
RetrieverQueryEnginepara responder preguntas sobre sus datos. Cuando se le solicita, el motor de consulta realiza las siguientes acciones:Utiliza MongoDB Vector Search como recuperador para consultar documentos semánticamente similares según la solicitud.
Llama al LLM que especificó cuando configuró su entorno para generar una respuesta consciente del contexto basada en los documentos recuperados.
Solicita al LLM una consulta de muestra sobre las recomendaciones de seguridad de Atlas.
Devuelve la respuesta del LLM y los documentos utilizados como contexto. La respuesta generada puede variar.
# Instantiate MongoDB Vector Search as a retriever vector_store_retriever = VectorIndexRetriever(index=vector_store_index, similarity_top_k=5) # Pass the retriever into the query engine query_engine = RetrieverQueryEngine(retriever=vector_store_retriever) # Prompt the LLM response = query_engine.query("What was MongoDB's latest acquisition?") print(response) print("\nSource documents: ") pprint.pprint(response.source_nodes)
MongoDB's latest acquisition was Voyage AI, a pioneer in embedding and reranking models for next-generation AI applications. Source documents: [NodeWithScore(node=TextNode(id_='82a2a0c0-80b9-4a9e-a848-529b4ff8f301', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='8cfe6680-8dec-486e-92c5-89ac1733b6c8', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='b6c412af868c29d67a6b030f266cd0e680f4a578a34c209c1818ff9a366c9d44'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='479446ef-8a32-410d-a5e0-8650bd10d78d', node_type='1', metadata={}, hash='b805543bf0ef0efc25492098daa9bd9c037043fb7228fb0c3270de235e668341')}, metadata_template='{key}: {value}', metadata_separator='\n', text="Fourth Quarter Fiscal 2025 and Recent Business Highlights\nMongoDB acquired Voyage AI, a pioneer in state-of-the-art embedding and reranking models that power next-generation\nAI applications. Integrating Voyage AI's technology with MongoDB will enable organizations to easily build trustworthy,\nAI-powered applications by offering highly accurate and relevant information retrieval deeply integrated with operational\ndata.", mimetype='text/plain', start_char_idx=1678, end_char_idx=2101, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.9279670119285583), NodeWithScore(node=TextNode(id_='453137d9-8902-4fae-8d81-5f5d9b0836eb', embedding=None, metadata={'page_label': '1', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='62b7cace-30c0-4687-9d87-e178547ae357', node_type='4', metadata={'page_label': '1', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='cb1dbd172c17e53682296ccc966ebdbb5605acb4fbf3872286e3a202c1d3650d'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='b6ae7c13-5bec-47f5-887f-835fc7bae374', node_type='1', metadata={'page_label': '1', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='a4835102686cdf03d1106946237d50031d00a0861eea892e38b928dd5e44e295'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='3d4034d3-bac5-4985-8926-9213f8a87318', node_type='1', metadata={}, hash='f103b351f2bda28ec3d2f1bb4f40d93ac1698ea5f7630a5297688a4caa419389')}, metadata_template='{key}: {value}', metadata_separator='\n', text='"Looking ahead, we remain incredibly excited about our long-term growth opportunity. MongoDB removes the constraints of legacy databases,\nenabling businesses to innovate at AI speed with our flexible document model and seamless scalability. Following the Voyage AI acquisition, we\ncombine real-time data, sophisticated embedding and retrieval models and semantic search directly in the database, simplifying the development of\ntrustworthy AI-powered apps."', mimetype='text/plain', start_char_idx=1062, end_char_idx=1519, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.921961784362793), NodeWithScore(node=TextNode(id_='85dd431c-2d4c-4336-ab39-e87a97b30c59', embedding=None, metadata={'page_label': '4', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='311532cc-f526-4fc3-adb6-49e76afdd580', node_type='4', metadata={'page_label': '4', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='37f0ad7fcb7f204226ea7c6c475360e2db55bb77447f1742a164efb9c1da5dc0'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='6175bcb6-9e2a-4196-85f7-0585bcbbdd3b', node_type='1', metadata={}, hash='0e92e55a50f8b6dbfe7bcaedb0ccc42345a185048efcd440e3ee1935875e7cbf')}, metadata_template='{key}: {value}', metadata_separator='\n', text="Headquartered in New York, MongoDB's mission is to empower innovators to create, transform, and disrupt industries with software and data.\nMongoDB's unified, intelligent data platform was built to power the next generation of applications, and MongoDB is the most widely available, globally\ndistributed database on the market.", mimetype='text/plain', start_char_idx=0, end_char_idx=327, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.9217028021812439), NodeWithScore(node=TextNode(id_='f3c35db6-43e5-4da7-a297-d9b009b9d300', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='3008736c-29f0-4b41-ac0f-efdb469319b9', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='cd3647350e6d7fcd89e2303fe1995b8f91b633c5f33e14b3b4c18a16738ea86f'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='c9bef874-77ee-40bc-a1fe-ca42d1477cb3', node_type='1', metadata={}, hash='c7d7af8a1b43b587a9c47b27f57e7cb8bc35bd90390a078db21e3f5253ee7cc1')}, metadata_template='{key}: {value}', metadata_separator='\n', text='Lombard Odier, a Swiss private bank, partnered with MongoDB to migrate and modernize its legacy banking technology\nsystems on MongoDB with generative AI. The initiative enabled the bank to migrate code 50-60 times quicker and move\napplications from a legacy relational database to MongoDB 20 times faster than previous migrations.', mimetype='text/plain', start_char_idx=2618, end_char_idx=2951, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.9197831153869629), NodeWithScore(node=TextNode(id_='479446ef-8a32-410d-a5e0-8650bd10d78d', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='82a2a0c0-80b9-4a9e-a848-529b4ff8f301', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='688872b911c388c239669970f562d4014aaec4753903e75f4bdfcf1eb1daf5ab'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='3008736c-29f0-4b41-ac0f-efdb469319b9', node_type='1', metadata={}, hash='a854a9bf103e429ce78b45603df9e2341e5d0692aa95e544e6c82616be29b28e')}, metadata_template='{key}: {value}', metadata_separator='\n', text='MongoDB completed the redemption of 2026 Convertible Notes, eliminating all debt from the balance sheet. Additionally, in\nconjunction with the acquisition of Voyage, MongoDB is announcing a stock buyback program of $200 million, to offset the\ndilutive impact of the acquisition consideration.', mimetype='text/plain', start_char_idx=2102, end_char_idx=2396, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.9183852672576904)]
Este ejemplo hace lo siguiente:
Define un filtro de metadatos en el campo
metadata.page_labelpara que MongoDB Vector Search busque documentos que aparecen solo en la página dos.Crea una instancia de MongoDB Vector Search como recuperador de índices vectoriales, un tipo específico de recuperador para almacenes de vectores. Incluye los filtros de metadatos definidos y el
similarity_top_kparámetro para que MongoDB Vector Search recupere solo los 5 documentos más relevantes de la página dos.
Crea una instancia del motor de consulta
RetrieverQueryEnginepara responder preguntas sobre sus datos. Cuando se le solicita, el motor de consulta realiza las siguientes acciones:Utiliza MongoDB Vector Search como recuperador para consultar documentos semánticamente similares según la solicitud.
Llama al LLM que especificó cuando configuró su entorno para generar una respuesta consciente del contexto basada en los documentos recuperados.
Solicita al LLM una consulta de muestra sobre las recomendaciones de seguridad de Atlas.
Devuelve la respuesta del LLM y los documentos utilizados como contexto. La respuesta generada puede variar.
# Specify metadata filters metadata_filters = MetadataFilters( filters=[ExactMatchFilter(key="metadata.page_label", value="2")] ) # Instantiate MongoDB Vector Search as a retriever vector_store_retriever = VectorIndexRetriever(index=vector_store_index, filters=metadata_filters, similarity_top_k=5) # Pass the retriever into the query engine query_engine = RetrieverQueryEngine(retriever=vector_store_retriever) # Prompt the LLM response = query_engine.query("What was MongoDB's latest acquisition?") print(response) print("\nSource documents: ") pprint.pprint(response.source_nodes)
MongoDB's latest acquisition was Voyage AI, a pioneer in embedding and reranking models that power next-generation AI applications. Source documents: [NodeWithScore(node=TextNode(id_='82a2a0c0-80b9-4a9e-a848-529b4ff8f301', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='8cfe6680-8dec-486e-92c5-89ac1733b6c8', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='b6c412af868c29d67a6b030f266cd0e680f4a578a34c209c1818ff9a366c9d44'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='479446ef-8a32-410d-a5e0-8650bd10d78d', node_type='1', metadata={}, hash='b805543bf0ef0efc25492098daa9bd9c037043fb7228fb0c3270de235e668341')}, metadata_template='{key}: {value}', metadata_separator='\n', text="Fourth Quarter Fiscal 2025 and Recent Business Highlights\nMongoDB acquired Voyage AI, a pioneer in state-of-the-art embedding and reranking models that power next-generation\nAI applications. Integrating Voyage AI's technology with MongoDB will enable organizations to easily build trustworthy,\nAI-powered applications by offering highly accurate and relevant information retrieval deeply integrated with operational\ndata.", mimetype='text/plain', start_char_idx=1678, end_char_idx=2101, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.9280173778533936), NodeWithScore(node=TextNode(id_='f3c35db6-43e5-4da7-a297-d9b009b9d300', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='3008736c-29f0-4b41-ac0f-efdb469319b9', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='cd3647350e6d7fcd89e2303fe1995b8f91b633c5f33e14b3b4c18a16738ea86f'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='c9bef874-77ee-40bc-a1fe-ca42d1477cb3', node_type='1', metadata={}, hash='c7d7af8a1b43b587a9c47b27f57e7cb8bc35bd90390a078db21e3f5253ee7cc1')}, metadata_template='{key}: {value}', metadata_separator='\n', text='Lombard Odier, a Swiss private bank, partnered with MongoDB to migrate and modernize its legacy banking technology\nsystems on MongoDB with generative AI. The initiative enabled the bank to migrate code 50-60 times quicker and move\napplications from a legacy relational database to MongoDB 20 times faster than previous migrations.', mimetype='text/plain', start_char_idx=2618, end_char_idx=2951, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.9198455214500427), NodeWithScore(node=TextNode(id_='479446ef-8a32-410d-a5e0-8650bd10d78d', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='82a2a0c0-80b9-4a9e-a848-529b4ff8f301', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='688872b911c388c239669970f562d4014aaec4753903e75f4bdfcf1eb1daf5ab'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='3008736c-29f0-4b41-ac0f-efdb469319b9', node_type='1', metadata={}, hash='a854a9bf103e429ce78b45603df9e2341e5d0692aa95e544e6c82616be29b28e')}, metadata_template='{key}: {value}', metadata_separator='\n', text='MongoDB completed the redemption of 2026 Convertible Notes, eliminating all debt from the balance sheet. Additionally, in\nconjunction with the acquisition of Voyage, MongoDB is announcing a stock buyback program of $200 million, to offset the\ndilutive impact of the acquisition consideration.', mimetype='text/plain', start_char_idx=2102, end_char_idx=2396, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.918432891368866), NodeWithScore(node=TextNode(id_='3008736c-29f0-4b41-ac0f-efdb469319b9', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='479446ef-8a32-410d-a5e0-8650bd10d78d', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='833c2af73d617c1fef7d04111e010bfe06eeeb36c71225c0fb72987cd164526b'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='f3c35db6-43e5-4da7-a297-d9b009b9d300', node_type='1', metadata={}, hash='c39c6258ff9fe34b650dd2782ae20e1ed57ed20465176cbf455ee9857e57dba0')}, metadata_template='{key}: {value}', metadata_separator='\n', text='For the third consecutive year, MongoDB was named a Leader in the 2024 Gartner® Magic Quadrant™ for Cloud\nDatabase Management Systems. Gartner evaluated 20 vendors based on Ability to Execute and Completeness of Vision.', mimetype='text/plain', start_char_idx=2397, end_char_idx=2617, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.917201817035675), NodeWithScore(node=TextNode(id_='d50a3746-84ac-4928-a252-4eda3515f9fc', embedding=None, metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, excluded_embed_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], excluded_llm_metadata_keys=['file_name', 'file_type', 'file_size', 'creation_date', 'last_modified_date', 'last_accessed_date'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='2171a7d3-482c-4f83-beee-8c37e0ebc747', node_type='4', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='ef623ef7400aa6e120f821b455b2ddce99b94c57365e7552b676abaa3eb23640'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='25e4f1c9-41ba-4344-b775-842a0a15c207', node_type='1', metadata={'page_label': '2', 'file_name': 'mongodb-earnings-report.pdf', 'file_path': 'data/mongodb-earnings-report.pdf', 'file_type': 'application/pdf', 'file_size': 150863, 'creation_date': '2025-05-28', 'last_modified_date': '2025-05-28'}, hash='28af4302a69924722e2ccd2015b8d64fa83790b4f0d4759898ede48e40668fa1'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='13da6584-75b4-4eb8-a071-8297087ce12c', node_type='1', metadata={}, hash='e316923acbe01dede55287258f9649bb9865ef2357f2316e190b97aef84f22ec')}, metadata_template='{key}: {value}', metadata_separator='\n', text="as amended, including statements concerning MongoDB's financial guidance\nfor the first fiscal quarter and full year fiscal 2026 and underlying assumptions, our expectations regarding Atlas consumption growth and the benefits\nof the Voyage AI acquisition.", mimetype='text/plain', start_char_idx=5174, end_char_idx=5428, metadata_seperator='\n', text_template='{metadata_str}\n\n{content}'), score=0.9084539413452148)]
Próximos pasos
Para explorar la biblioteca completa de herramientas de LlamaIndex para aplicaciones RAG, que incluye conectores de datos, índices y motores de consulta, consulte LlamaHub.
Para extender la aplicación de este tutorial y tener conversaciones bidireccionales, consulta Chat Engine.
MongoDB también proporciona los siguientes recursos para desarrolladores: