How to Run $lookup
with an Atlas Search $search
Query
Starting in v6.0, the MongoDB $lookup
aggregation stage
supports $search
inside the $lookup
pipeline
option. Using $lookup
, you can join
multiple collections in the same database at query-time and run a
$search
query to further narrow down your search.
Note
$lookup
queries are not very performant because Atlas Search
does a full document lookup on the database for each document in the
collection. To learn more, see
Reduce $lookup
Operations.
This tutorial demonstrates how to run a $lookup
query
with $search
against the accounts
and customers
collections in the sample_analytics
database. It takes you through
the following steps:
Set up an Atlas Search index with dynamic mapping for the
accounts
collection in thesample_analytics
database.Run
$lookup
query with$search
to find customers from thecustomers
collections whose accounts have purchased bothCurrencyService
andInvestmentStock
products in theaccounts
collection.
Before you begin, ensure that your Atlas cluster meets the requirements described in the Prerequisites.
Note
To run $lookup
query with $search
, your
cluster must run MongoDB v6.0 or later. If not, Atlas Search displays the
following error message:
$_internalSearchMongotRemote is not allowed within a $lookup's sub-pipeline.
To learn more, see Upgrade Major MongoDB Version for a Cluster.
To create an Atlas Search index, you must have Project Data Access Admin
or higher access to the project.
Create the Atlas Search Index
Create an Atlas Search index named lookup-with-search-tutorial
on all the
fields in the sample_analytics.accounts
collection.
In Atlas, go to the Clusters page for your project.
If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.
If it's not already displayed, select your desired project from the Projects menu in the navigation bar.
If the Clusters page is not already displayed, click Database in the sidebar.
The Clusters page displays.
Go to the Atlas Search page for your cluster.
You can go the Atlas Search page from the sidebar, the Data Explorer, or your cluster details page.
In the sidebar, click Atlas Search under the Services heading.
From the Select data source dropdown, select your cluster and click Go to Atlas Search.
The Atlas Search page displays.
Click the Browse Collections button for your cluster.
Expand the database and select the collection.
Click the Search Indexes tab for the collection.
The Atlas Search page displays.
Click the cluster's name.
Click the Atlas Search tab.
The Atlas Search page displays.
Enter the Index Name, and set the Database and Collection.
In the Index Name field, enter
lookup-with-search-tutorial
.If you name your index
default
, you don't need to specify anindex
parameter in the $search pipeline stage. If you give a custom name to your index, you must specify this name in theindex
parameter.In the Database and Collection section, find the
sample_analytics
database, and select theaccounts
collection.
Specify an index definition.
The following index definition dynamically indexes the fields of supported types in the collection. You can use the Atlas Search Visual Editor or the Atlas Search JSON Editor in the Atlas user interface to create the index.
Click Next.
Review the default index definition for the collection.
Click Next.
Review the index definition.
Your index definition should look similar to the following:
{ "mappings": { "dynamic": true } } Click Next.
Run $lookup
with $search
to Search the Collections
➤ Use the Select your language drop-down menu on this page to set the language of the examples in this section.
Connect to your Atlas cluster and run the sample query against the
indexed collections in the sample_analytics
database.
Connect to your cluster in mongosh
.
Open mongosh
in a terminal window and connect to your
cluster. For detailed instructions on connecting, see
Connect via mongosh
.
Switch to the sample_analytics
database.
Run the following command at mongosh
prompt:
use sample_analytics
switched to db sample_analytics
Run the following $lookup
with Atlas Search $search
query.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
db.customers.aggregate([ { $lookup:{ "from": "accounts", "localField": "accounts", "foreignField": "account_id", "as": "purchases", "pipeline": [{ "$search": { "index": "lookup-with-search-tutorial", "compound": { "must": [{ "queryString": { "defaultPath": "products", "query": "products: (CurrencyService AND InvestmentStock)" } }], "should": [{ "range": { "path": "limit", "gte": 5000, "lte": 10000 } }] } } },{ "$project": { "_id": 0 } }] } },{ "$limit": 5 },{ "$project": { "_id": 0, "address": 0, "birthdate": 0, "username": 0, "tier_and_details": 0 } } ])
[ { name: 'Elizabeth Ray', email: 'arroyocolton@gmail.com', active: true, accounts: [ 371138, 324287, 276528, 332179, 422649, 387979 ], purchases: [ { account_id: 422649, limit: 10000, products: [ 'CurrencyService', 'InvestmentStock' ] }, { account_id: 324287, limit: 10000, products: [ 'Commodity', 'CurrencyService', 'Derivatives', 'InvestmentStock' ] }, { account_id: 332179, limit: 10000, products: [ 'Commodity', 'CurrencyService', 'InvestmentFund', 'Brokerage', 'InvestmentStock' ] } ] }, { name: 'Lindsay Cowan', email: 'cooperalexis@hotmail.com', accounts: [ 116508 ], purchases: [] }, { name: 'Katherine David', email: 'timothy78@hotmail.com', accounts: [ 462501, 228290, 968786, 515844, 377292 ], purchases: [ { account_id: 228290, limit: 10000, products: [ 'CurrencyService', 'InvestmentStock', 'InvestmentFund', 'Brokerage' ] }, { account_id: 515844, limit: 10000, products: [ 'Commodity', 'CurrencyService', 'InvestmentFund', 'Brokerage', 'InvestmentStock' ] } ] }, { name: 'Leslie Martinez', email: 'tcrawford@gmail.com', accounts: [ 170945, 951849 ], purchases: [] }, { name: 'Brad Cardenas', email: 'dustin37@yahoo.com', accounts: [ 721914, 817222, 973067, 260799, 87389 ], purchases: [ { account_id: 87389, limit: 10000, products: [ 'CurrencyService', 'InvestmentStock' ] }, { account_id: 260799, limit: 10000, products: [ 'Brokerage', 'InvestmentStock', 'Commodity', 'CurrencyService' ] } ] } ]
Connect to your cluster in MongoDB Compass.
Open MongoDB Compass and connect to your cluster. For detailed instructions on connecting, see Connect via Compass.
Run an Atlas Search query against the collection.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
To run this query in MongoDB Compass:
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.
Pipeline StageQuery$lookup
{ from: "accounts", localField: "accounts", foreignField: "account_id", as: "purchases", pipeline: [ { $search: { index: "lookup-with-search-tutorial", compound: { must: [ { queryString: { defaultPath: "products", query: "products: (CurrencyService AND InvestmentStock)" } } ], should: [ { range: { path: "limit", gte: 5000, lte: 10000, } } ] } } }, { $project: { _id: 0, } } ] } $limit
5
$project
{ _id: 0, address: 0, birthdate: 0, username: 0, tier_and_details: 0, } If you enabled Auto Preview, MongoDB Compass displays the following documents next to the
$project
pipeline stage:name: Elizabeth Ray email: arroyocolton@gmail.com active: True accounts: Array (6) purchases: Array (3) name: "Lindsay Cowan" email: "cooperalexis@hotmail.com" accounts: Array (1) purchases: Array (empty) name: "Katherine David" email: "timothy78@hotmail.com" accounts: Array (5) urchases: Array (2) name: "Leslie Martinez" email: "tcrawford@gmail.com" accounts: Array (2) purchases: Array (empty) name: "Brad Cardenas" email: "dustin37@yahoo.com" accounts: Array (5) purchases: Array (2)
Set up and initialize the .NET/C# project for the query.
Create a new directory called
lookup-with-search
and initialize your project with the dotnet new command.mkdir lookup-with-search cd lookup-with-search dotnet new console Add the .NET/C# Driver to your project as a dependency.
dotnet add package MongoDB.Driver
Copy and paste the query into the Program.cs
file.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Core; 6 using MongoDB.Driver.Search; 7 8 public class LookupWithSearch{ 9 10 static void Main(string[] args) {// allow automapping of the camelCase database fields to our MovieDocument 11 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 12 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 13 14 // connect to your Atlas cluster 15 var mongoClient = new MongoClient("<connection-string>"); 16 17 // define namespace 18 var analyticsDatabase = mongoClient.GetDatabase("sample_analytics"); 19 var accountsCollection = analyticsDatabase.GetCollection<AccountDocument>("accounts"); 20 var customersCollection = analyticsDatabase.GetCollection<CustomerDocument>("customers"); 21 22 // define pipeline stages 23 var lookupStage = new BsonDocument("$lookup", new BsonDocument{ 24 { "from", "accounts" }, { "localField", "accounts" }, { "foreignField", "account_id" }, 25 { "as", "purchases" }, { "pipeline", new BsonArray{ 26 new BsonDocument("$search", new BsonDocument{ 27 { "index", "lookup-with-search-tutorial" }, { "compound", new BsonDocument{ 28 { "must", new BsonArray{ 29 new BsonDocument("queryString", new BsonDocument{ 30 { "defaultPath", "products" }, { "query", "products: (CurrencyService AND InvestmentStock)" } 31 }) 32 }}, 33 { "should", new BsonArray{ 34 new BsonDocument("range", new BsonDocument{ 35 { "path", "limit" }, { "gte", 5000 }, { "lte", 10000 } 36 }) 37 }} 38 }} 39 }) 40 }} 41 }); 42 var projectStage1 = new BsonDocument("$project", new BsonDocument("_id", 0)); 43 var limitStage = new BsonDocument("$limit", 5); 44 var projectStage2 = new BsonDocument("$project", new BsonDocument{ 45 { "_id", 0 }, { "address", 0 }, { "birthdate", 0 }, { "username", 0 }, { "tier_and_details", 0 } 46 }); 47 var aggregationPipeline = new List<BsonDocument> {lookupStage, projectStage1, limitStage, projectStage2}; 48 49 // run pipeline 50 var results = customersCollection.Aggregate<BsonDocument>(aggregationPipeline).ToList(); 51 52 // print results 53 foreach (var acct in results) { 54 Console.WriteLine(acct.ToJson()); 55 } 56 } 57 } 58 59 // define fields in the accounts collection 60 [ ]61 public class AccountDocument { 62 [ ]63 [ ]64 [ ]65 public string Id { get; set; } 66 67 [ ]68 public int AccountId { get; set; } 69 70 [ ]71 public int Limit { get; set; } 72 } 73 74 // define fields in the customers collection 75 [ ]76 public class CustomerDocument { 77 [ ]78 [ ]79 [ ]80 public ObjectId Id { get; set; } 81 82 [ ]83 public string Name { get; set; } 84 85 [ ]86 public string Email { get; set; } 87 88 [ ]89 public bool Active { get; set; } 90 91 [ ]92 public List<int> Accounts { get; set; } 93 } 94 95 // define new array field for matching documents 96 public class CustomerLookedUp: CustomerDocument{ 97 public List<CustomerDocument> Purchases { get; set; } 98 }
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Compile and run the Program.cs
file.
dotnet run lookup-with-search.csproj
{ "name" : "Elizabeth Ray", "email" : "arroyocolton@gmail.com", "active" : true, "accounts" : [371138, 324287, 276528, 332179, 422649, 387979], "purchases" : [ { "_id" : ObjectId("5ca4bbc7a2dd94ee58162402"), "account_id" : 422649, "limit" : 10000, "products" : ["CurrencyService", "InvestmentStock"] }, { "_id" : ObjectId("5ca4bbc7a2dd94ee581623a9"), "account_id" : 324287, "limit" : 10000, "products" : ["Commodity", "CurrencyService", "Derivatives", "InvestmentStock"] }, { "_id" : ObjectId("5ca4bbc7a2dd94ee58162400"), "account_id" : 332179, "limit" : 10000, "products" : ["Commodity", "CurrencyService", "InvestmentFund", "Brokerage", "InvestmentStock"] } ] } { "name" : "Lindsay Cowan", "email" : "cooperalexis@hotmail.com", "accounts" : [116508], "purchases" : [] } { "name" : "Katherine David", "email" : "timothy78@hotmail.com", "accounts" : [462501, 228290, 968786, 515844, 377292], "purchases" : [ { "_id" : ObjectId("5ca4bbc7a2dd94ee581623c9"), "account_id" : 228290, "limit" : 10000, "products" : ["CurrencyService", "InvestmentStock", "InvestmentFund", "Brokerage"] }, { "_id" : ObjectId("5ca4bbc7a2dd94ee581623cb"), "account_id" : 515844, "limit" : 10000, "products" : ["Commodity", "CurrencyService", "InvestmentFund", "Brokerage", "InvestmentStock"] } ] } { "name" : "Leslie Martinez", "email" : "tcrawford@gmail.com", "accounts" : [170945, 951849], "purchases" : [] } { "name" : "Brad Cardenas", "email" : "dustin37@yahoo.com", "accounts" : [721914, 817222, 973067, 260799, 87389], "purchases" : [ { "_id" : ObjectId("5ca4bbc7a2dd94ee581623d6"), "account_id" : 87389, "limit" : 10000, "products" : ["CurrencyService", "InvestmentStock"] }, { "_id" : ObjectId("5ca4bbc7a2dd94ee581623d5"), "account_id" : 260799, "limit" : 10000, "products" : ["Brokerage", "InvestmentStock", "Commodity", "CurrencyService"] } ] }
Copy and paste the query into the lookup-with-search-query.go
file.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
1 package main 2 import ( 3 "context" 4 "fmt" 5 "time" 6 7 "go.mongodb.org/mongo-driver/bson" 8 "go.mongodb.org/mongo-driver/mongo" 9 "go.mongodb.org/mongo-driver/mongo/options" 10 ) 11 12 func main() { 13 var err error 14 // connect to the Atlas cluster 15 ctx := context.Background() 16 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>")) 17 if err != nil { 18 panic(err) 19 } 20 defer client.Disconnect(ctx) 21 // set namespace 22 collection := client.Database("sample_analytics").Collection("customers") 23 // define pipeline 24 lookupStage := bson.D{{"$lookup", bson.D{ 25 {"from", "accounts"}, 26 {"localField", "accounts"}, 27 {"foreignField", "account_id"}, 28 {"as", "purchases"}, 29 {"pipeline", bson.A{ 30 bson.D{ 31 {"$search", bson.D{ 32 {"index", "lookup-with-search-tutorial"}, 33 {"compound", bson.D{ 34 {"must", bson.A{ 35 bson.D{{"queryString", bson.D{ 36 {"defaultPath", "products"}, 37 {"query", "products: (CurrencyService AND InvestmentStock)"}, 38 }}}, 39 }}, 40 {"should", bson.A{ 41 bson.D{{"range", bson.D{ 42 {"path", "limit"}, 43 {"gte", 5000}, 44 {"lte", 10000}, 45 }}}, 46 }}, 47 }}, 48 }}, 49 }, 50 bson.D{{"$project", bson.D{ 51 {"_id", 0}, 52 {"address", 0}, 53 {"birthdate", 0}, 54 {"username", 0}, 55 {"tier_and_details", 0}, 56 }}}, 57 }}, 58 }}} 59 limitStage := bson.D{{"$limit", 5}} 60 projectStage := bson.D{{"$project", bson.D{ 61 {"name", 1}, 62 {"email", 1}, 63 {"active", 1}, 64 {"accounts", 1}, 65 {"purchases", 1}, 66 }}} 67 // specify the amount of time the operation can run on the server 68 opts := options.Aggregate().SetMaxTime(5 * time.Second) 69 // run pipeline 70 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{lookupStage, limitStage, projectStage}, opts) 71 if err != nil { 72 panic(err) 73 } 74 // print results 75 var results []bson.D 76 if err = cursor.All(context.TODO(), &results); err != nil { 77 panic(err) 78 } 79 for _, result := range results { 80 fmt.Println(result) 81 } 82 }
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Run the command to query your collection.
go run lookup-with-search-query.go
[{_id ObjectID("5ca4bbcea2dd94ee58162a68")} {name Elizabeth Ray} {email arroyocolton@gmail.com} {active true} {accounts [371138 324287 276528 332179 422649 387979]} {purchases [[{account_id 422649} {limit 10000} {products [CurrencyService InvestmentStock]}] [{account_id 324287} {limit 10000} {products [Commodity CurrencyService Derivatives InvestmentStock]}] [{account_id 332179} {limit 10000} {products [Commodity CurrencyService InvestmentFund Brokerage InvestmentStock]}]]}] [{_id ObjectID("5ca4bbcea2dd94ee58162a69")} {name Lindsay Cowan} {email cooperalexis@hotmail.com} {accounts [116508]} {purchases []}] [{_id ObjectID("5ca4bbcea2dd94ee58162a6a")} {name Katherine David} {email timothy78@hotmail.com} {accounts [462501 228290 968786 515844 377292]} {purchases [[{account_id 228290} {limit 10000} {products [CurrencyService InvestmentStock InvestmentFund Brokerage]}] [{account_id 515844} {limit 10000} {products [Commodity CurrencyService InvestmentFund Brokerage InvestmentStock]}]]}] [{_id ObjectID("5ca4bbcea2dd94ee58162a6b")} {name Leslie Martinez} {email tcrawford@gmail.com} {accounts [170945 951849]} {purchases []}] [{_id ObjectID("5ca4bbcea2dd94ee58162a6c")} {name Brad Cardenas} {email dustin37@yahoo.com} {accounts [721914 817222 973067 260799 87389]} {purchases [[{account_id 87389} {limit 10000} {products [CurrencyService InvestmentStock]}] [{account_id 260799} {limit 10000} {products [Brokerage InvestmentStock Commodity CurrencyService]}]]}]
Copy and paste the query into the LookupWithSearchQuery.java
file.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
1 import static com.mongodb.client.model.Aggregates.limit; 2 import static com.mongodb.client.model.Aggregates.project; 3 import static com.mongodb.client.model.Projections.*; 4 import java.util.Arrays; 5 import com.mongodb.client.MongoClient; 6 import com.mongodb.client.MongoClients; 7 import com.mongodb.client.MongoCollection; 8 import com.mongodb.client.MongoDatabase; 9 import org.bson.Document; 10 11 public class LookupWithSearchQuery { 12 13 public static void main(String[] args) { 14 // connect to your Atlas cluster 15 String uri = "<connection-string>"; 16 17 try (MongoClient mongoClient = MongoClients.create(uri)) { 18 // set namespace 19 MongoDatabase database = mongoClient.getDatabase("sample_analytics"); 20 MongoCollection<Document> collection = database.getCollection("customers"); 21 22 // define pipeline 23 Document agg = new Document("$lookup", 24 new Document("from", "accounts") 25 .append("localField", "accounts") 26 .append("foreignField", "account_id") 27 .append("as", "purchases") 28 .append("pipeline", Arrays.asList(new Document("$search", 29 new Document("index", "lookup-with-search-tutorial") 30 .append("compound", 31 new Document("must", Arrays.asList(new Document("queryString", 32 new Document("defaultPath", "products") 33 .append("query", "products: (CurrencyService AND InvestmentStock)")))) 34 .append("should", Arrays.asList(new Document("range", 35 new Document("path", "limit") 36 .append("gte", 5000L) 37 .append("lte", 10000L) 38 ))) 39 ) 40 ), 41 new Document("$limit", 5L), 42 new Document("$project", 43 new Document("_id", 0L) 44 .append("address", 0L) 45 .append("birthdate", 0L) 46 .append("username", 0L) 47 .append("tier_and_details", 0L) 48 ))) 49 ); 50 // run pipeline and print results 51 collection.aggregate(Arrays.asList(agg, 52 limit(5), 53 project(fields(excludeId(), include("name", "email", "active", "accounts", "purchases"))) 54 )) 55 .forEach(doc -> System.out.println(doc.toJson())); 56 } 57 } 58 }
Note
To run the sample code in your Maven environment, add the following code above the import statements in your file.
package com.mongodb.drivers;
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Compile and run the LookupWithSearchQuery.java
file.
javac LookupWithSearchQuery.java java LookupWithSearchQuery
{"name": "Elizabeth Ray", "email": "arroyocolton@gmail.com", "active": true, "accounts": [371138, 324287, 276528, 332179, 422649, 387979], "purchases": [{"account_id": 422649, "limit": 10000, "products": ["CurrencyService", "InvestmentStock"]}, {"account_id": 324287, "limit": 10000, "products": ["Commodity", "CurrencyService", "Derivatives", "InvestmentStock"]}, {"account_id": 332179, "limit": 10000, "products": ["Commodity", "CurrencyService", "InvestmentFund", "Brokerage", "InvestmentStock"]}]} {"name": "Lindsay Cowan", "email": "cooperalexis@hotmail.com", "accounts": [116508], "purchases": []} {"name": "Katherine David", "email": "timothy78@hotmail.com", "accounts": [462501, 228290, 968786, 515844, 377292], "purchases": [{"account_id": 228290, "limit": 10000, "products": ["CurrencyService", "InvestmentStock", "InvestmentFund", "Brokerage"]}, {"account_id": 515844, "limit": 10000, "products": ["Commodity", "CurrencyService", "InvestmentFund", "Brokerage", "InvestmentStock"]}]} {"name": "Leslie Martinez", "email": "tcrawford@gmail.com", "accounts": [170945, 951849], "purchases": []} {"name": "Brad Cardenas", "email": "dustin37@yahoo.com", "accounts": [721914, 817222, 973067, 260799, 87389], "purchases": [{"account_id": 87389, "limit": 10000, "products": ["CurrencyService", "InvestmentStock"]}, {"account_id": 260799, "limit": 10000, "products": ["Brokerage", "InvestmentStock", "Commodity", "CurrencyService"]}]}
Copy and paste the query into the LookupWithSearchQuery.kt
file.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 import java.util.* 8 9 fun main() { 10 // connect to your Atlas cluster 11 val uri = "<connection-string>" 12 val mongoClient = MongoClient.create(uri) 13 14 // set namespace 15 val database = mongoClient.getDatabase("sample_analytics") 16 val collection = database.getCollection<Document>("customers") 17 18 runBlocking { 19 // define pipeline 20 val agg = Document( 21 "\$lookup", 22 Document("from", "accounts") 23 .append("localField", "accounts") 24 .append("foreignField", "account_id") 25 .append("as", "purchases") 26 .append( 27 "pipeline", Arrays.asList( 28 Document( 29 "\$search", 30 Document("index", "lookup-with-search-tutorial") 31 .append( 32 "compound", 33 Document( 34 "must", Arrays.asList( 35 Document( 36 "queryString", 37 Document("defaultPath", "products") 38 .append("query", "products: (CurrencyService AND InvestmentStock)") 39 ) 40 ) 41 ) 42 .append( 43 "should", Arrays.asList( 44 Document( 45 "range", 46 Document("path", "limit") 47 .append("gte", 5000) 48 .append("lte", 10000) 49 ) 50 ) 51 ) 52 ) 53 ), 54 Document("\$limit", 5), 55 Document( 56 "\$project", 57 Document("_id", 0) 58 .append("address", 0) 59 .append("birthdate", 0) 60 .append("username", 0) 61 .append("tier_and_details", 0) 62 ) 63 ) 64 ) 65 ) 66 67 // run pipeline and print results 68 val resultsFlow = collection.aggregate<Document>( 69 listOf( 70 agg, 71 limit(5), 72 project(fields(excludeId(), include("name", "email", "active", "accounts", "purchases"))) 73 ) 74 ) 75 resultsFlow.collect { println(it) } 76 } 77 mongoClient.close() 78 }
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Run the LookupWithSearchQuery.kt
file.
When you run the LookupWithSearchQuery.kt
program in your IDE, it prints
the following documents:
Document{{name=Elizabeth Ray, email=arroyocolton@gmail.com, active=true, accounts=[371138, 324287, 276528, 332179, 422649, 387979], purchases=[Document{{account_id=422649, limit=10000, products=[CurrencyService, InvestmentStock]}}, Document{{account_id=324287, limit=10000, products=[Commodity, CurrencyService, Derivatives, InvestmentStock]}}, Document{{account_id=332179, limit=10000, products=[Commodity, CurrencyService, InvestmentFund, Brokerage, InvestmentStock]}}]}} Document{{name=Lindsay Cowan, email=cooperalexis@hotmail.com, accounts=[116508], purchases=[]}} Document{{name=Katherine David, email=timothy78@hotmail.com, accounts=[462501, 228290, 968786, 515844, 377292], purchases=[Document{{account_id=228290, limit=10000, products=[CurrencyService, InvestmentStock, InvestmentFund, Brokerage]}}, Document{{account_id=515844, limit=10000, products=[Commodity, CurrencyService, InvestmentFund, Brokerage, InvestmentStock]}}]}} Document{{name=Leslie Martinez, email=tcrawford@gmail.com, accounts=[170945, 951849], purchases=[]}} Document{{name=Brad Cardenas, email=dustin37@yahoo.com, accounts=[721914, 817222, 973067, 260799, 87389], purchases=[Document{{account_id=87389, limit=10000, products=[CurrencyService, InvestmentStock]}}, Document{{account_id=260799, limit=10000, products=[Brokerage, InvestmentStock, Commodity, CurrencyService]}}]}}
Copy and paste the sample query into the lookup-with-search-query.js
file.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
1 const MongoClient = require("mongodb").MongoClient; 2 const assert = require("assert"); 3 4 const agg = [ 5 { 6 '$lookup': { 7 'from': 'accounts', 8 'localField': 'accounts', 9 'foreignField': 'account_id', 10 'as': 'purchases', 11 'pipeline': [ 12 { 13 '$search': { 14 'index': 'lookup-with-search-tutorial', 15 'compound': { 16 'must': [ 17 { 18 'queryString': { 19 'defaultPath': 'products', 20 'query': 'products: (CurrencyService AND InvestmentStock)' 21 } 22 } 23 ], 24 'should': [ 25 { 26 'range': { 27 'path': 'limit', 28 'gte': 5000, 29 'lte': 10000 30 } 31 } 32 ] 33 } 34 } 35 }, { 36 '$project': { 37 '_id': 0 38 } 39 } 40 ] 41 } 42 }, { 43 '$limit': 5 44 }, { 45 '$project': { 46 '_id': 0, 47 'address': 0, 48 'birthdate': 0, 49 'username': 0, 50 'tier_and_details': 0 51 } 52 } 53 ]; 54 55 MongoClient.connect( 56 "<connection-string>", 57 { useNewUrlParser: true, useUnifiedTopology: true }, 58 async function (connectErr, client) { 59 assert.equal(null, connectErr); 60 const coll = client.db("sample_analytics").collection("customers"); 61 let cursor = await coll.aggregate(agg); 62 await cursor.forEach((doc) => console.log(doc)); 63 client.close(); 64 } 65 );
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Query your collection.
Run the following command to query your collection:
node lookup-with-search-query.js
{ name: 'Elizabeth Ray', email: 'arroyocolton@gmail.com', active: true, accounts: [ 371138, 324287, 276528, 332179, 422649, 387979 ], purchases: [ { account_id: 422649, limit: 10000, products: [Array] }, { account_id: 324287, limit: 10000, products: [Array] }, { account_id: 332179, limit: 10000, products: [Array] } ] } { name: 'Lindsay Cowan', email: 'cooperalexis@hotmail.com', accounts: [ 116508 ], purchases: [] } { name: 'Katherine David', email: 'timothy78@hotmail.com', accounts: [ 462501, 228290, 968786, 515844, 377292 ], purchases: [ { account_id: 228290, limit: 10000, products: [Array] }, { account_id: 515844, limit: 10000, products: [Array] } ] } { name: 'Leslie Martinez', email: 'tcrawford@gmail.com', accounts: [ 170945, 951849 ], purchases: [] } { name: 'Brad Cardenas', email: 'dustin37@yahoo.com', accounts: [ 721914, 817222, 973067, 260799, 87389 ], purchases: [ { account_id: 87389, limit: 10000, products: [Array] }, { account_id: 260799, limit: 10000, products: [Array] } ] }
Copy and paste the query into the lookup-with-search-query.py
file.
The following query uses the following stages:
$lookup
to do the following:Join
customers
andaccounts
collections in thesample_analytics
database based on the account ID of the customers and return the matching documents from theaccounts
collection in an array field namedpurchases
.Use
$search
stage in the sub-pipeline to search for customer accounts thatmust
have purchased bothCurrencyService
andInvestmentStock
with preference for an order limit between5000
to10000
.
$limit
stage to limit the output to5
results.$project
stage to exclude the specified fields in the results.
1 import datetime 2 import pymongo 3 4 # connect to your Atlas cluster 5 client = pymongo.MongoClient('<connection-string>') 6 7 # define pipeline 8 pipeline = [ 9 { 10 '$lookup': { 11 'from': 'accounts', 12 'localField': 'accounts', 13 'foreignField': 'account_id', 14 'as': 'purchases', 15 'pipeline': [ 16 { 17 '$search': { 18 'index': 'lookup-with-search-tutorial', 19 'compound': { 20 'must': [ 21 { 22 'queryString': { 23 'defaultPath': 'products', 24 'query': 'products: (CurrencyService AND InvestmentStock)' 25 } 26 } 27 ], 28 'should': [ 29 { 30 'range': { 31 'path': 'limit', 32 'gte': 5000, 33 'lte': 10000 34 } 35 } 36 ] 37 } 38 } 39 }, 40 { '$project': { '_id': 0 } } 41 ] 42 } 43 }, 44 { '$limit': 5 }, 45 { 46 '$project': { 47 '_id': 0, 48 'address': 0, 49 'birthdate': 0, 50 'username': 0, 51 'tier_and_details': 0 52 } 53 } 54 ] 55 56 # run pipeline 57 result = client['sample_analytics']['customers'].aggregate(pipeline) 58 59 # print results 60 for i in result: 61 print(i)
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Run the command to query your collection.
python lookup-with-search-query.py
{'name': 'Elizabeth Ray', 'email': 'arroyocolton@gmail.com', 'active': True, 'accounts': [371138, 324287, 276528, 332179, 422649, 387979], 'purchases': [{'account_id': 422649, 'limit': 10000, 'products': ['CurrencyService', 'InvestmentStock']}, {'account_id': 324287, 'limit': 10000, 'products': ['Commodity', 'CurrencyService', 'Derivatives', 'InvestmentStock']}, {'account_id': 332179, 'limit': 10000, 'products': ['Commodity', 'CurrencyService', 'InvestmentFund', 'Brokerage', 'InvestmentStock']}]} {'name': 'Lindsay Cowan', 'email': 'cooperalexis@hotmail.com', 'accounts': [116508], 'purchases': []} {'name': 'Katherine David', 'email': 'timothy78@hotmail.com', 'accounts': [462501, 228290, 968786, 515844, 377292], 'purchases': [{'account_id': 228290, 'limit': 10000, 'products': ['CurrencyService', 'InvestmentStock', 'InvestmentFund', 'Brokerage']}, {'account_id': 515844, 'limit': 10000, 'products': ['Commodity', 'CurrencyService', 'InvestmentFund', 'Brokerage', 'InvestmentStock']}]} {'name': 'Leslie Martinez', 'email': 'tcrawford@gmail.com', 'accounts': [170945, 951849], 'purchases': []} {'name': 'Brad Cardenas', 'email': 'dustin37@yahoo.com', 'accounts': [721914, 817222, 973067, 260799, 87389], 'purchases': [{'account_id': 87389, 'limit': 10000, 'products': ['CurrencyService', 'InvestmentStock']}, {'account_id': 260799, 'limit': 10000, 'products': ['Brokerage', 'InvestmentStock', 'Commodity', 'CurrencyService']}]}