Você pode usar a scoreDetails opção booleana em seu $search estágio para obter um detalhamento detalhado da pontuação de cada documento nos resultados da query.
Quando você define scoreDetails: true em seu estágio, o MongoDB Search retorna informações de pontuação detalhadas para cada documento correspondente. Essas informações explicam por que um documento correspondeu à query e recebeu sua pontuação de relevância nos resultados da $search pesquisa.
Por padrão, a pontuação é baseada na 25 fórmula bm:
Frequência do termo: com que frequência um termo de pesquisa aparece no documento
Frequência inversa de documento : quão comum é o termo de pesquisa em todos os documentos
Comprimento do campo: o comprimento do campo que corresponde à query
A opção scoreDetails divide estes fatores para ajudá-lo a analisar por que um documento correspondeu à query e recebeu sua pontuação.
Para visualizar os metadados, você deve utilizar a expressão $meta $project no estágio.
Sintaxe
{ "$search": { "<operator>": { <operator-specification> }, "scoreDetails": true | false } }, { "$project": { "scoreDetails": {"$meta": "searchScoreDetails"} } }
Opções
No estágio $search, a opção booleana scoreDetails assume um dos seguintes valores:
true- para incluir detalhes da pontuação dos documentos nos resultados. Se definidotruecomo, o MongoDB Search retornará um detalhamento detalhado da pontuação para cada documento no resultado. Isso fornece informações sobre por que determinados documentos corresponderam a uma query do MongoDB Search. Para saber mais, consulte Saída.false- para excluir detalhes do detalhamento da pontuação dos resultados. (Padrão)
Se omitido, a opção scoreDetails será padronizada como false.
No estágio $project, o campo scoreDetails assume a expressão $meta, que requer o seguinte valor:
| Retorna um detalhamento detalhado da pontuação para cada documento nos resultados. |
Saída
A opção scoreDetails retorna os seguintes campos na array details dentro do objeto scoreDetails para cada documento no resultado:
Campo | Tipo | Descrição |
|---|---|---|
| float | Contribuição para a pontuação de um subconjunto da fórmula de pontuação. O A fórmula de pontuação varia de acordo com o operador usado na query. Por exemplo, o MongoDB Search usa uma função de decaimento de distância para calcular a pontuação do operador próximo. |
| string | Subconjunto da fórmula de pontuação, incluindo detalhes sobre como o documento foi pontuado e os fatores considerados no cálculo da pontuação. O nível superior Para saber mais, consulte Fatores que contribuem para a pontuação. |
| Array de objetos | Detalhamento da pontuação para cada correspondência no documento com base no subconjunto da fórmula de pontuação. O valor é uma array de objetos de detalhes de pontuação, recursivos em estrutura. |
Fatores que contribuem para a pontuação
Diferentes operadores de query usam algoritmos diferentes para calcular o searchScore para cada documento nos resultados. As seções a seguir descrevem como os operadores de query comuns lidam com a pontuação:
Operadores de texto, frase, queryString e preenchimento automático
Por padrão, os operadores de texto,frase, queryString e autocompletar usam o bm25 algoritmo de similaridade para pontuar documentos.
Recomendamos usar os algoritmos stableTfl ou boolean quando você precisar de resultados consistentes em várias queries, especialmente se ambos os itens a seguir forem verdadeiros:
Seu aplicação classifica os resultados por
searchScoree pagina os resultados, que depende da pontuação determinística para evitar duplicatas ou documentos ignoradosSeu sistema usa nós dedicados do MongoDB Search ou tem preferência de leitura definido
secondarycomonearestou, o que aumenta a probabilidade de que as queries inicial e subsequente sejam roteadas para diferentes nós do MongoDB Search
bm25 as pontuações podem não ser consistentes entre as queries subsequentes. Cada nó do MongoDB Search cria índices do MongoDB Search e executa operações de atualização e exclusão de forma independente, resultando em um corpus de documento que pode variar entre diferentes nós do MongoDB Search. Como os cálculos bm25 dependem do corpus do documento , as queries subsequentes que são roteadas para diferentes nós do MongoDB Search podem calcular pontuações bm25 diferentes para os mesmos documentos.
Para usar um algoritmo de similaridade diferente, especifique a similarity.type propriedade na definição de índice do MongoDB Search para os campos que você indexa como tipo string ou do MongoDB autocomplete Search. Para saber como configurar um índice do MongoDB Search para esses tipos, consulte Como indexar campos de string ou Como indexar campos para preenchimento automático.
Você pode escolher entre os seguintes algoritmos de similaridade ao especificar a propriedade similarity.type em sua definição de índice do MongoDB Search:
bm25
bm25 é um algoritmo de classificação popular que classifica documentos com base em:
Frequência do termo: com que frequência um termo de pesquisa aparece no documento
Frequência inversa de documento : quão comum é o termo de pesquisa em todos os documentos
Comprimento do campo: o comprimento do campo que corresponde à query
bm25 calcula a pontuação como boost * idf * tf, onde cada fator é definido da seguinte forma:
Fator | Descrição | |
|---|---|---|
| Fator especificado no momento da query usando a opção do operador de | |
| Frequência de documento inversa da query. O MongoDB Search calcula a frequência usando a seguinte fórmula: onde:
| |
| Frequência do termo. O MongoDB Search calcula a frequência usando a seguinte fórmula: onde:
|
booleano
boolean é um algoritmo de pontuação que verifica se cada termo da query está presente em um documento e conta quantos termos são encontrados. Todos os termos correspondentes são tratados da mesma forma, sem ajuste pela importância ou frequência do termo .
Para boolean, a pontuação é calculada como a soma de todos os termos da query presentes no documento, em que cada termo contribui com um valor de 1 para a pontuação, se estiver presente no documento.
stableTfl
stableTfl é um algoritmo de classificação personalizado do MongoDB Search que usa o comprimento dos termos para derivar a raridade dos termo . Isso se baseia na lei de Zipf, que afirma que palavras mais longas aparecem com menos frequência (são mais raras).
stableTfl calcula a pontuação como boost * tr * tf, onde cada fator é definido da seguinte forma:
Fator | Descrição | |
|---|---|---|
| Fator especificado no momento da query usando a opção do operador de | |
| Função em queda. O MongoDB Search calcula a função de decaimento usando a seguinte fórmula: onde:
| |
| Raridade do termo. O MongoDB Search calcula a raiz do termo usando a seguinte fórmula: onde:
| |
| Função de probabilidade baseada na lei de Zipf. O MongoDB Search calcula a probabilidade de o termo da query aparecer no documento usando a seguinte fórmula: onde:
|
operador próximo
O operador próximo usa uma função de decaimento de distância para pontuar documentos. Ele mede a proximidade dos resultados do MongoDB Search do número, data ou ponto geográfico que você definiu como o origin valor.
A função de decaimento da distância calcula a pontuação como pivot / (pivot +
distance), onde cada fator é definido da seguinte forma:
Fator | Descrição | |
|---|---|---|
| Valor especificado como ponto de referência para tornar a pontuação igual a | |
| Distância absoluta entre onde:
|
Exemplos
Os exemplos a seguir mostram como recuperar os detalhes das pontuações nos resultados para o seguinte:
A query é executada usando operadores text, near, composto e embeddedDocument .
Query com pontuações modificadas usando expressão de opção
function.
Dica
Para visualizar detalhes da pontuação recursivamente nas matrizes de objetos, configure as configurações em mongosh executando o seguinte:
config.set('inspectDepth', Infinity)
Exemplos de operador
Os exemplos a seguir demonstram como recuperar um detalhamento da pontuação usando a opção $search scoreDetails para o documento nos resultados da query dos operadores text, near, composta e embeddedDocument .
Exemplos de pontuação personalizada
Os exemplos a seguir demonstram como recuperar um detalhamento da pontuação usando a opção $search scoreDetails para o documento nos resultados da query de exemplo de expressão em relação à collection sample_mflix.movies .
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "multiply":[ 9 { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 2 13 } 14 }, 15 { 16 "score": "relevance" 17 } 18 ] 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 $limit: 5 27 }, 28 { 29 $project: { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 }])
[ { title: 'Men...', score: 23.431293487548828, scoreDetails: { value: 23.431293487548828, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 23.431293487548828, description: '(imdb.rating * scores)', details: [] } ] } }, { title: '12 Angry Men', score: 22.080968856811523, scoreDetails: { value: 22.080968856811523, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 22.080968856811523, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'Matchstick Men', score: 21.05954933166504, scoreDetails: { value: 21.05954933166504, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.05954933166504, description: '(imdb.rating * scores)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "men", 7 "score": { 8 "function":{ 9 "constant": 3 10 } 11 } 12 }, 13 "scoreDetails": true 14 } 15 }, 16 { 17 $limit: 5 18 }, 19 { 20 $project: { 21 "_id": 0, 22 "title": 1, 23 "score": { "$meta": "searchScore" }, 24 "scoreDetails": {"$meta": "searchScoreDetails"} 25 } 26 } 27 ])
[ { title: 'Men Without Women', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'One Hundred Men and a Girl', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'Of Mice and Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: "All the King's Men", score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'The Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "shop", 7 "score": { 8 "function":{ 9 "gauss": { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 4.6 13 }, 14 "origin": 9.5, 15 "scale": 5, 16 "offset": 0, 17 "decay": 0.5 18 } 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 "$limit": 10 27 }, 28 { 29 "$project": { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 } 36 ])
[ { title: 'The Shop Around the Corner', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Exit Through the Gift Shop', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Shop on Main Street', score: 0.9395227432250977, scoreDetails: { value: 0.9395227432250977, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9395227432250977, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Chop Shop', score: 0.8849083781242371, scoreDetails: { value: 0.8849083781242371, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8849083781242371, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Little Shop of Horrors', score: 0.8290896415710449, scoreDetails: { value: 0.8290896415710449, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8290896415710449, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Suicide Shop', score: 0.7257778644561768, scoreDetails: { value: 0.7257778644561768, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.7257778644561768, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'A Woman, a Gun and a Noodle Shop', score: 0.6559237241744995, scoreDetails: { value: 0.6559237241744995, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6559237241744995, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Beauty Shop', score: 0.6274620294570923, scoreDetails: { value: 0.6274620294570923, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6274620294570923, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "path": { 9 "value": "imdb.rating", 10 "undefined": 4.6 11 } 12 } 13 } 14 }, 15 "scoreDetails": true 16 } 17 }, 18 { 19 $limit: 5 20 }, 21 { 22 $project: { 23 "_id": 0, 24 "title": 1, 25 "score": { "$meta": "searchScore" }, 26 "scoreDetails": {"$meta": "searchScoreDetails"} 27 } 28 }])
[ { title: '12 Angry Men', score: 8.899999618530273, scoreDetails: { value: 8.899999618530273, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.899999618530273, description: 'imdb.rating', details: [] } ] } }, { title: 'The Men Who Built America', score: 8.600000381469727, scoreDetails: { value: 8.600000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.600000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'No Country for Old Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'The Best of Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "score": "relevance" 9 } 10 } 11 }, 12 "scoreDetails": true 13 } 14 }, 15 { 16 $limit: 5 17 }, 18 { 19 $project: { 20 "_id": 0, 21 "title": 1, 22 "score": { "$meta": "searchScore" }, 23 "scoreDetails": {"$meta": "searchScoreDetails"} 24 } 25 }])
[ { title: 'Men...', score: 3.4457783699035645, scoreDetails: { value: 3.4457783699035645, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'weight($type:string/title:men in 4705) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.6196683645248413, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 1, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'The Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 870) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Simple Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 6371) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'X-Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8368) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Mystery Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8601) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function": { 8 "log": { 9 "path": { 10 "value": "imdb.rating", 11 "undefined": 10 12 } 13 } 14 } 15 } 16 }, 17 "scoreDetails": true 18 } 19 }, 20 { 21 $limit: 5 22 }, 23 { 24 $project: { 25 "_id": 0, 26 "title": 1, 27 "score": { "$meta": "searchScore" }, 28 "scoreDetails": {"$meta": "searchScoreDetails"} 29 } 30 }])
[ { title: '12 Angry Men', score: 0.9493899941444397, scoreDetails: { value: 0.9493899941444397, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9493899941444397, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Men Who Built America', score: 0.9344984292984009, scoreDetails: { value: 0.9344984292984009, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9344984292984009, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'No Country for Old Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Best of Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } } ]