Menu Docs
Página inicial do Docs
/ /

Retorne os Detalhes da Pontuação

Você pode usar a scoreDetails opção booleana em seu $search estágio para obter um detalhamento detalhado da pontuação de cada documento nos resultados da query.

Quando você define scoreDetails: true em seu estágio, o MongoDB Search retorna informações de pontuação detalhadas para cada documento correspondente. Essas informações explicam por que um documento correspondeu à query e recebeu sua pontuação de relevância nos resultados da $search pesquisa.

Por padrão, a pontuação é baseada na 25 fórmula bm:

  • Frequência do termo: com que frequência um termo de pesquisa aparece no documento

  • Frequência inversa de documento : quão comum é o termo de pesquisa em todos os documentos

  • Comprimento do campo: o comprimento do campo que corresponde à query

A opção scoreDetails divide estes fatores para ajudá-lo a analisar por que um documento correspondeu à query e recebeu sua pontuação.

Para visualizar os metadados, você deve utilizar a expressão $meta $project no estágio.

{
"$search": {
"<operator>": {
<operator-specification>
},
"scoreDetails": true | false
}
},
{
"$project": {
"scoreDetails": {"$meta": "searchScoreDetails"}
}
}

No estágio $search, a opção booleana scoreDetails assume um dos seguintes valores:

  • true - para incluir detalhes da pontuação dos documentos nos resultados. Se definido true como, o MongoDB Search retornará um detalhamento detalhado da pontuação para cada documento no resultado. Isso fornece informações sobre por que determinados documentos corresponderam a uma query do MongoDB Search. Para saber mais, consulte Saída.

  • false - para excluir detalhes do detalhamento da pontuação dos resultados. (Padrão)

Se omitido, a opção scoreDetails será padronizada como false.

No estágio $project, o campo scoreDetails assume a expressão $meta, que requer o seguinte valor:

searchScoreDetails

Retorna um detalhamento detalhado da pontuação para cada documento nos resultados.

A opção scoreDetails retorna os seguintes campos na array details dentro do objeto scoreDetails para cada documento no resultado:

Campo
Tipo
Descrição

value

float

Contribuição para a pontuação de um subconjunto da fórmula de pontuação. O value de nível superior mostra a pontuação inteira do documento de resultado , e é igual ao valor de $searchScore.

A fórmula de pontuação varia de acordo com o operador usado na query. Por exemplo, o MongoDB Search usa uma função de decaimento de distância para calcular a pontuação do operador próximo.

description

string

Subconjunto da fórmula de pontuação, incluindo detalhes sobre como o documento foi pontuado e os fatores considerados no cálculo da pontuação. O nível superior description mostra toda a fórmula de pontuação usada para pontuar o documento.

Para saber mais, consulte Fatores que contribuem para a pontuação.

details

Array de objetos

Detalhamento da pontuação para cada correspondência no documento com base no subconjunto da fórmula de pontuação. O valor é uma array de objetos de detalhes de pontuação, recursivos em estrutura.

Diferentes operadores de query usam algoritmos diferentes para calcular o searchScore para cada documento nos resultados. As seções a seguir descrevem como os operadores de query comuns lidam com a pontuação:

Por padrão, os operadores de texto,frase, queryString e autocompletar usam o bm25 algoritmo de similaridade para pontuar documentos.

Recomendamos usar os algoritmos stableTfl ou boolean quando você precisar de resultados consistentes em várias queries, especialmente se ambos os itens a seguir forem verdadeiros:

  • Seu aplicação classifica os resultados por searchScore e pagina os resultados, que depende da pontuação determinística para evitar duplicatas ou documentos ignorados

  • Seu sistema usa nós dedicados do MongoDB Search ou tem preferência de leitura definido secondary como nearest ou, o que aumenta a probabilidade de que as queries inicial e subsequente sejam roteadas para diferentes nós do MongoDB Search

bm25 as pontuações podem não ser consistentes entre as queries subsequentes. Cada nó do MongoDB Search cria índices do MongoDB Search e executa operações de atualização e exclusão de forma independente, resultando em um corpus de documento que pode variar entre diferentes nós do MongoDB Search. Como os cálculos bm25 dependem do corpus do documento , as queries subsequentes que são roteadas para diferentes nós do MongoDB Search podem calcular pontuações bm25 diferentes para os mesmos documentos.

Para usar um algoritmo de similaridade diferente, especifique a similarity.type propriedade na definição de índice do MongoDB Search para os campos que você indexa como tipo string ou do MongoDB autocomplete Search. Para saber como configurar um índice do MongoDB Search para esses tipos, consulte Como indexar campos de string ou Como indexar campos para preenchimento automático.

Você pode escolher entre os seguintes algoritmos de similaridade ao especificar a propriedade similarity.type em sua definição de índice do MongoDB Search:

bm25 é um algoritmo de classificação popular que classifica documentos com base em:

  • Frequência do termo: com que frequência um termo de pesquisa aparece no documento

  • Frequência inversa de documento : quão comum é o termo de pesquisa em todos os documentos

  • Comprimento do campo: o comprimento do campo que corresponde à query

bm25 calcula a pontuação como boost * idf * tf, onde cada fator é definido da seguinte forma:

Fator
Descrição

boost

Fator especificado no momento da query usando a opção do operador de score.boost query. Você pode definir boost como um número positivo ou o valor de um campo numérico nos documentos. Para saber mais, consulte impulso.

idf

Frequência de documento inversa da query. O MongoDB Search calcula a frequência usando a seguinte fórmula:

idf = log(1 + (N - n + 0.5) / (n + 0.5))

onde:

  • N é o número total de documentos com o campo de query .

  • n é o número de documentos que contêm o termo de query .

tf

Frequência do termo. O MongoDB Search calcula a frequência usando a seguinte fórmula:

tf = freq / (freq + k1 * (1 - b + b * dl / avgdl))

onde:

  • freq é o número de ocorrências do termo no documento.

  • k1 é o parâmetro de saturação de termo especificado internamente. Ela afeta o quanto a pontuação aumenta a cada recorrência do termo.

  • b é o parâmetro de normalização de comprimento especificado internamente. b é multiplicado pela proporção de dl para avgdl. Se b aumentar, os efeitos da proporção de dl para avgdl serão ampliados.

  • dl é o comprimento do campo no documento.

  • avgdl é o comprimento médio do campo em todos os documentos.

boolean é um algoritmo de pontuação que verifica se cada termo da query está presente em um documento e conta quantos termos são encontrados. Todos os termos correspondentes são tratados da mesma forma, sem ajuste pela importância ou frequência do termo .

Para boolean, a pontuação é calculada como a soma de todos os termos da query presentes no documento, em que cada termo contribui com um valor de 1 para a pontuação, se estiver presente no documento.

stableTfl é um algoritmo de classificação personalizado do MongoDB Search que usa o comprimento dos termos para derivar a raridade dos termo . Isso se baseia na lei de Zipf, que afirma que palavras mais longas aparecem com menos frequência (são mais raras).

stableTfl calcula a pontuação como boost * tr * tf, onde cada fator é definido da seguinte forma:

Fator
Descrição

boost

Fator especificado no momento da query usando a opção do operador de score.boost query. Você pode definir boost como um número positivo ou o valor de um campo numérico nos documentos. Para saber mais, consulte impulso.

tf

Função em queda. O MongoDB Search calcula a função de decaimento usando a seguinte fórmula:

tf = freq / (freq + k1)

onde:

  • freq é a frequência do termo de consulta em um documento.

  • k1 é o parâmetro de saturação de termo especificado internamente. Ela afeta o quanto a pontuação aumenta a cada recorrência do termo.

tr

Raridade do termo. O MongoDB Search calcula a raiz do termo usando a seguinte fórmula:

tr = log(1 + (1 - p + 0.05)/(p + 0.05))

onde:

  • p é a probabilidade de o termo da query aparecer no documento com base no comprimento do termo . Isso se baseia na lei de Zipf, que afirma que palavras mais longas aparecem com menos frequência. Para determinar a raiz do termo , o MongoDB usa uma função decrescente com base no comprimento do termo .

p

Função de probabilidade baseada na lei de Zipf. O MongoDB Search calcula a probabilidade de o termo da query aparecer no documento usando a seguinte fórmula:

p = 1 - (1 - m * 2 ^ (-c * tl)) ^ dl

onde:

  • m é a constante multiplicativa especificada internamente para a probabilidade de termo .

  • c é a constante de decaimento especificada internamente. Ele controla a rapidez com que p diminui à medida que a duração do termo aumenta.

  • tl é o comprimento do termo de consulta , medido em pontos de código unicode.

  • dl é o comprimento do documento d, medido em tokens.

O operador próximo usa uma função de decaimento de distância para pontuar documentos. Ele mede a proximidade dos resultados do MongoDB Search do número, data ou ponto geográfico que você definiu como o origin valor.

A função de decaimento da distância calcula a pontuação como pivot / (pivot + distance), onde cada fator é definido da seguinte forma:

Fator
Descrição

pivot

Valor especificado como ponto de referência para tornar a pontuação igual a 0.5 se a distância entre fieldValue e origin for igual a ele. Isso define a rapidez com que a pontuação diminui à medida que a distância entre fieldValue e origin aumenta. Para uma determinada distância entre fieldValue e origin, se pivot diminuir, a pontuação também diminui.

distance

Distância absoluta entre fieldValue e origin. O MongoDB Search calcula esse valor usando a seguinte fórmula:

abs(fieldValue - origin)

onde:

  • fieldValue é o valor do campo que você está consultando no documento.

  • origin é o número, data ou ponto geográfico para pesquisar próximo.

Os exemplos a seguir mostram como recuperar os detalhes das pontuações nos resultados para o seguinte:

Dica

Para visualizar detalhes da pontuação recursivamente nas matrizes de objetos, configure as configurações em mongosh executando o seguinte:

config.set('inspectDepth', Infinity)

Os exemplos a seguir demonstram como recuperar um detalhamento da pontuação usando a opção $search scoreDetails para o documento nos resultados da query dos operadores text, near, composta e embeddedDocument .

O exemplo a seguir usa o operador text para fazer uma query no campo title na coleção sample_mflix.movies para o termo autumn. A query especifica a opção scoreDetails no estágio $search para obter um detalhamento da pontuação de cada documento presente nos resultados. A query usa o estágio $limit para limitar os resultados a três documentos, e o estágio $project para fazer o seguinte:

  • Exclua o campo _id .

  • Inclua somente o campo title .

  • Adicione o campo score aos resultados para retornar a pontuação do documento e o campo scoreDetails aos resultados para retornar um detalhamento detalhado da pontuação do documento.

1db.movies.aggregate([
2 {
3 "$search": {
4 "text": {
5 "path": "title",
6 "query": "autumn"
7 },
8 "scoreDetails": true
9 }
10 },
11 {
12 "$limit": 3
13 },
14 {
15 "$project": {
16 "_id": 0,
17 "title": 1,
18 "score": { "$meta": "searchScore" },
19 "scoreDetails": { "$meta": "searchScoreDetails" }
20 }
21 }
22])
1[
2 {
3 title: 'Autumn Leaves',
4 score: 3.834893226623535,
5 scoreDetails: {
6 value: 3.834893226623535,
7 description: '$type:string/title:autumn [BM25Similarity], result of:',
8 details: [
9 {
10 value: 3.834893226623535,
11 description: 'score(freq=1.0), computed as boost * idf * tf from:',
12 details: [
13 {
14 value: 7.39188289642334,
15 description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
16 details: [
17 {
18 value: 14,
19 description: 'n, number of documents containing term',
20 details: []
21 },
22 {
23 value: 23529,
24 description: 'N, total number of documents with field',
25 details: []
26 }
27 ]
28 },
29 {
30 value: 0.5187978744506836,
31 description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
32 details: [
33 {
34 value: 1,
35 description: 'freq, occurrences of term within document',
36 details: []
37 },
38 {
39 value: 1.2000000476837158,
40 description: 'k1, term saturation parameter',
41 details: []
42 },
43 {
44 value: 0.75,
45 description: 'b, length normalization parameter',
46 details: []
47 },
48 {
49 value: 2,
50 description: 'dl, length of field',
51 details: []
52 },
53 {
54 value: 2.868375301361084,
55 description: 'avgdl, average length of field',
56 details: []
57 }
58 ]
59 }
60 ]
61 }
62 ]
63 }
64 },
65 {
66 title: 'Late Autumn',
67 score: 3.834893226623535,
68 scoreDetails: {
69 value: 3.834893226623535,
70 description: '$type:string/title:autumn [BM25Similarity], result of:',
71 details: [
72 {
73 value: 3.834893226623535,
74 description: 'score(freq=1.0), computed as boost * idf * tf from:',
75 details: [
76 {
77 value: 7.39188289642334,
78 description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
79 details: [
80 {
81 value: 14,
82 description: 'n, number of documents containing term',
83 details: []
84 },
85 {
86 value: 23529,
87 description: 'N, total number of documents with field',
88 details: []
89 }
90 ]
91 },
92 {
93 value: 0.5187978744506836,
94 description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
95 details: [
96 {
97 value: 1,
98 description: 'freq, occurrences of term within document',
99 details: []
100 },
101 {
102 value: 1.2000000476837158,
103 description: 'k1, term saturation parameter',
104 details: []
105 },
106 {
107 value: 0.75,
108 description: 'b, length normalization parameter',
109 details: []
110 },
111 {
112 value: 2,
113 description: 'dl, length of field',
114 details: []
115 },
116 {
117 value: 2.868375301361084,
118 description: 'avgdl, average length of field',
119 details: []
120 }
121 ]
122 }
123 ]
124 }
125 ]
126 }
127 },
128 {
129 title: 'Cheyenne Autumn',
130 score: 3.834893226623535,
131 scoreDetails: {
132 value: 3.834893226623535,
133 description: '$type:string/title:autumn [BM25Similarity], result of:',
134 details: [
135 {
136 value: 3.834893226623535,
137 description: 'score(freq=1.0), computed as boost * idf * tf from:',
138 details: [
139 {
140 value: 7.39188289642334,
141 description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
142 details: [
143 {
144 value: 14,
145 description: 'n, number of documents containing term',
146 details: []
147 },
148 {
149 value: 23529,
150 description: 'N, total number of documents with field',
151 details: []
152 }
153 ]
154 },
155 {
156 value: 0.5187978744506836,
157 description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
158 details: [
159 {
160 value: 1,
161 description: 'freq, occurrences of term within document',
162 details: []
163 },
164 {
165 value: 1.2000000476837158,
166 description: 'k1, term saturation parameter',
167 details: []
168 },
169 {
170 value: 0.75,
171 description: 'b, length normalization parameter',
172 details: []
173 },
174 {
175 value: 2,
176 description: 'dl, length of field',
177 details: []
178 },
179 {
180 value: 2.868375301361084,
181 description: 'avgdl, average length of field',
182 details: []
183 }
184 ]
185 }
186 ]
187 }
188 ]
189 }
190 }
191]

O MongoDB Search leva em conta os seguintes BM25Similarity fatores para calcular a pontuação:

Fator
Descrição

boost

Fator especificado no momento da query usando a opção do operador de score.boost query. Você pode definir boost como um número positivo ou o valor de um campo numérico nos documentos. Para saber mais, consulte impulso.

idf

Frequência de documento inversa da query. O MongoDB Search calcula a frequência usando a seguinte fórmula:

idf = log(1 + (N - n + 0.5) / (n + 0.5))

onde:

  • N é o número total de documentos com o campo de query .

  • n é o número de documentos que contêm o termo de query .

tf

Frequência do termo. O MongoDB Search calcula a frequência usando a seguinte fórmula:

tf = freq / (freq + k1 * (1 - b + b * dl / avgdl))

onde:

  • freq é o número de ocorrências do termo no documento.

  • k1 é o parâmetro de saturação de termo especificado internamente. Ela afeta o quanto a pontuação aumenta a cada recorrência do termo.

  • b é o parâmetro de normalização de comprimento especificado internamente. b é multiplicado pela proporção de dl para avgdl. Se b aumentar, os efeitos da proporção de dl para avgdl serão ampliados.

  • dl é o comprimento do campo no documento.

  • avgdl é o comprimento médio do campo em todos os documentos.

O exemplo a seguir usa o operador near para fazer query no campo released na coleção sample_mflix.movies para filmes lançados perto de 01 de janeiro 2010. A query especifica a opção scoreDetails no estágio $search para obter um detalhamento da pontuação para cada documento nos resultados. A query usa o estágio $limit para limitar os resultados a três documentos e o estágio $project para fazer o seguinte:

  • Exclua o campo _id .

  • Inclua apenas os campos title e released.

  • Adicione o campo score aos resultados para retornar a pontuação do documento e o campo scoreDetails aos resultados para retornar um detalhamento detalhado da pontuação do documento.

1db.movies.aggregate([
2 {
3 "$search": {
4 "near": {
5 "path": "released",
6 "origin": ISODate("2010-01-01T00:00:00.000+00:00"),
7 "pivot": 7776000000
8 },
9 "scoreDetails": true
10 }
11 },
12 {
13 "$limit": 3
14 },
15 {
16 "$project": {
17 "_id": 0,
18 "title": 1,
19 "released": 1,
20 "score": { "$meta": "searchScore" },
21 "scoreDetails": { "$meta": "searchScoreDetails" }
22 }
23 }
24])
1[
2 {
3 title: 'Tony',
4 released: ISODate("2010-01-01T00:00:00.000Z"),
5 score: 1,
6 scoreDetails: {
7 value: 1,
8 description: 'Distance score, computed as weight * pivotDistance / (pivotDistance + abs(value - origin)) from:',
9 details: [
10 { value: 1, description: 'weight', details: [] },
11 {
12 value: 7776000000,
13 description: 'pivotDistance',
14 details: []
15 },
16 { value: 1262303969280, description: 'origin', details: [] },
17 {
18 value: 1262303969280,
19 description: 'current value',
20 details: []
21 }
22 ]
23 }
24 },
25 {
26 title: 'And Everything Is Going Fine',
27 released: ISODate("2010-01-01T00:00:00.000Z"),
28 score: 1,
29 scoreDetails: {
30 value: 1,
31 description: 'Distance score, computed as weight * pivotDistance / (pivotDistance + abs(value - origin)) from:',
32 details: [
33 { value: 1, description: 'weight', details: [] },
34 {
35 value: 7776000000,
36 description: 'pivotDistance',
37 details: []
38 },
39 { value: 1262303969280, description: 'origin', details: [] },
40 {
41 value: 1262303969280,
42 description: 'current value',
43 details: []
44 }
45 ]
46 }
47 },
48 {
49 title: 'A Film with Me in It',
50 released: ISODate("2010-01-01T00:00:00.000Z")
51 score: 1,
52 scoreDetails: {
53 value: 1,
54 description: 'Distance score, computed as weight * pivotDistance / (pivotDistance + abs(value - origin)) from:',
55 details: [
56 { value: 1, description: 'weight', details: [] },
57 {
58 value: 7776000000,
59 description: 'pivotDistance',
60 details: []
61 },
62 { value: 1262303969280, description: 'origin', details: [] },
63 {
64 value: 1262303969280,
65 description: 'current value',
66 details: []
67 }
68 ]
69 }
70 }
71]

Para pontuação de distância, o MongoDB Search leva em conta os seguintes fatores para calcular a pontuação:

Fator
Descrição

pivot

Valor especificado como ponto de referência para tornar a pontuação igual a 0.5 se a distância entre fieldValue e origin for igual a ele. Isso define a rapidez com que a pontuação diminui à medida que a distância entre fieldValue e origin aumenta. Para uma determinada distância entre fieldValue e origin, se pivot diminuir, a pontuação também diminui.

distance

Distância absoluta entre fieldValue e origin. O MongoDB Search calcula esse valor usando a seguinte fórmula:

abs(fieldValue - origin)

onde:

  • fieldValue é o valor do campo que você está consultando no documento.

  • origin é o número, data ou ponto geográfico para pesquisar próximo.

O exemplo a seguir utiliza um operador composto para consultar a coleção sample_mflix.movies para filmes utilizando as seguintes cláusulas:

  • filter Cláusula para encontrar filmes que contenham o termo friend no título.

  • must cláusula para encontrar filmes lançados entre os anos 2000 e 2015.

  • mustNot para encontrar filmes que não estejam nos gêneros Short, Western, e Biography .

A consulta especifica a opção scoreDetails no estágio $search para recuperar uma análise detalhada da pontuação de cada documento nos resultados. A consulta usa o estágio $limit para limitar os resultados a três documentos e o estágio $project para fazer o seguinte:

  • Exclua o campo _id .

  • Inclua apenas os campos title, released e genres.

  • Adicione o campo score aos resultados para retornar a pontuação do documento e o campo scoreDetails aos resultados para retornar um detalhamento detalhado da pontuação do documento.

1db.movies.aggregate([
2 {
3 "$search": {
4 "compound": {
5 "filter": [{
6 "text": {
7 "query": "friend",
8 "path": "title"
9 }
10 }],
11 "must": [{
12 "range": {
13 "path": "year",
14 "gte": 2000,
15 "lte": 2015
16 }
17 }],
18 "mustNot": [{
19 "text": {
20 "query": ["Short, Western", "Biography"],
21 "path": "genres"
22 }
23 }]
24 },
25 "scoreDetails": true
26 }
27 },
28 {
29 "$limit": 3
30 },
31 {
32 "$project": {
33 "_id": 0,
34 "title": 1,
35 "released": 1,
36 "genres": 1,
37 "score": { "$meta": "searchScore" },
38 "scoreDetails": { "$meta": "searchScoreDetails" }
39 }
40 }
41])
1[
2 {
3 genres: [ 'Comedy', 'Drama', 'Mystery' ],
4 title: 'With a Friend Like Harry...',
5 released: ISODate("2001-06-15T00:00:00.000Z"),
6 score: 1,
7 scoreDetails: {
8 value: 1,
9 description: 'sum of:',
10 details: [
11 {
12 value: 0,
13 description: 'match on required clause, product of:',
14 details: [
15 { value: 0, description: '# clause', details: [] },
16 {
17 value: 1,
18 description: '$type:string/title:friend',
19 details: []
20 }
21 ]
22 },
23 {
24 value: 1,
25 description: 'sum of:',
26 details: [
27 {
28 value: 1,
29 description: 'sum of:',
30 details: [
31 {
32 value: 1,
33 description: '$type:double/year:[4656510908468559872 TO 4656576879166226432]',
34 details: []
35 }
36 ]
37 }
38 ]
39 }
40 ]
41 }
42 },
43 {
44 genres: [ 'Drama' ],
45 title: 'My Friend Henry',
46 released: ISODate("2004-08-20T00:00:00.000Z"),
47 score: 1,
48 scoreDetails: {
49 value: 1,
50 description: 'sum of:',
51 details: [
52 {
53 value: 0,
54 description: 'match on required clause, product of:',
55 details: [
56 { value: 0, description: '# clause', details: [] },
57 {
58 value: 1,
59 description: '$type:string/title:friend',
60 details: []
61 }
62 ]
63 },
64 {
65 value: 1,
66 description: 'sum of:',
67 details: [
68 {
69 value: 1,
70 description: 'sum of:',
71 details: [
72 {
73 value: 1,
74 description: '$type:double/year:[4656510908468559872 TO 4656576879166226432]',
75 details: []
76 }
77 ]
78 }
79 ]
80 }
81 ]
82 }
83 },
84 {
85 genres: [ 'Comedy', 'Drama' ],
86 title: 'A Friend of Mine',
87 released: ISODate("2006-10-26T00:00:00.000Z"),
88 score: 1,
89 scoreDetails: {
90 value: 1,
91 description: 'sum of:',
92 details: [
93 {
94 value: 0,
95 description: 'match on required clause, product of:',
96 details: [
97 { value: 0, description: '# clause', details: [] },
98 {
99 value: 1,
100 description: '$type:string/title:friend',
101 details: []
102 }
103 ]
104 },
105 {
106 value: 1,
107 description: 'sum of:',
108 details: [
109 {
110 value: 1,
111 description: 'sum of:',
112 details: [
113 {
114 value: 1,
115 description: '$type:double/year:[4656510908468559872 TO 4656576879166226432]',
116 details: []
117 }
118 ]
119 }
120 ]
121 }
122 ]
123 }
124 }
125]

Observação

A # clause nos resultados nas linhas 15, 56 e 97 representa a cláusula de query filter do operador composto, que não contribui para a pontuação do documento.

O exemplo a seguir usa o operador embeddedDocument para consultar o campo products.name na coleção sample_training.companies para produtos que contêm o termo Basic precedido por qualquer número de outros caracteres. A query especifica dentro do operador embeddedDocument que a pontuação retornada deve ser uma soma de todos os documentos incorporados correspondentes. A query também especifica a opção scoreDetails no estágio $search para recuperar uma análise detalhada da pontuação de cada documento nos resultados. A query usa o estágio $limit para limitar os resultados a três documentos e o estágio $project para fazer o seguinte:

  • Exclua o campo _id .

  • Inclua somente o campo products.name .

  • Adicione o campo score aos resultados para retornar a pontuação do documento e o campo scoreDetails aos resultados para retornar um detalhamento detalhado da pontuação do documento.

1db.companies.aggregate({
2 "$search": {
3 "embeddedDocument": {
4 "path": "products",
5 "operator": {
6 "wildcard": {
7 "path": "products.name",
8 "query": "*Basic",
9 "allowAnalyzedField": true
10 }
11 },
12 "score": {
13 "embedded": {
14 "aggregate": "sum"
15 }
16 }
17 },
18 "scoreDetails": true
19 }
20},
21{
22 "$limit": 3
23},
24{
25 "$project": {
26 "_id": 0,
27 "name": 1,
28 "products.name": 1,
29 "score": { "$meta": "searchScore" },
30 "scoreDetails": { "$meta": "searchScoreDetails" }
31 }
32})
1[
2 {
3 name: 'Plaxo',
4 products: [
5 { name: 'Plaxo Basic' },
6 { name: 'Plaxo Pulse' },
7 { name: 'Plaxo Personal Assistant' }
8 ],
9 score: 1,
10 scoreDetails: {
11 value: 1,
12 description: 'Score based on 1 child docs in range from 27 to 29, best match:',
13 details: [
14 {
15 value: 1,
16 description: '$embedded:8/products/$type:string/products.name:*Basic',
17 details: []
18 }
19 ]
20 }
21 },
22 {
23 name: 'The Game Creators',
24 products: [
25 { name: 'Dark Basic Professional' },
26 { name: 'FPS Creator' },
27 { name: 'FPS Creator X10' }
28 ],
29 score: 1,
30 scoreDetails: {
31 value: 1,
32 description: 'Score based on 1 child docs in range from 7474 to 7476, best match:',
33 details: [
34 {
35 value: 1,
36 description: '$embedded:8/products/$type:string/products.name:*basic',
37 details: []
38 }
39 ]
40 }
41 },
42 {
43 name: 'Load Impact',
44 products: [
45 { name: 'Load Impact LIGHT' },
46 { name: 'Load Impact BASIC' },
47 { name: 'Load Impact PROFESSIONAL' },
48 { name: 'Load Impact ADVANCED' }
49 ],
50 score: 1,
51 scoreDetails: {
52 value: 1,
53 description: 'Score based on 1 child docs in range from 11545 to 11548, best match:',
54 details: [
55 {
56 value: 1,
57 description: '$embedded:8/products/$type:string/products.name:*basic',
58 details: []
59 }
60 ]
61 }
62 }
63]

Observação

Para pontuações baseadas em documentos infantis na faixa, os números na faixa representam os IDs dos documentos de pais e filhos indexados pelo Lucene nos bastidores. Os description nos documentos secundários (na linhas 16, 36, e 57) mostram uma representação interna de um caminho.

Os exemplos a seguir demonstram como recuperar um detalhamento da pontuação usando a opção $search scoreDetails para o documento nos resultados da query de exemplo de expressão em relação à collection sample_mflix.movies .

1db.movies.aggregate([{
2 "$search": {
3 "text": {
4 "path": "title",
5 "query": "men",
6 "score": {
7 "function":{
8 "multiply":[
9 {
10 "path": {
11 "value": "imdb.rating",
12 "undefined": 2
13 }
14 },
15 {
16 "score": "relevance"
17 }
18 ]
19 }
20 }
21 },
22 "scoreDetails": true
23 }
24},
25{
26 $limit: 5
27},
28{
29 $project: {
30 "_id": 0,
31 "title": 1,
32 "score": { "$meta": "searchScore" },
33 "scoreDetails": {"$meta": "searchScoreDetails"}
34 }
35}])
[
{
title: 'Men...',
score: 23.431293487548828,
scoreDetails: {
value: 23.431293487548828,
description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:',
details: [
{
value: 23.431293487548828,
description: '(imdb.rating * scores)',
details: []
}
]
}
},
{
title: '12 Angry Men',
score: 22.080968856811523,
scoreDetails: {
value: 22.080968856811523,
description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:',
details: [
{
value: 22.080968856811523,
description: '(imdb.rating * scores)',
details: []
}
]
}
},
{
title: 'X-Men',
score: 21.34803581237793,
scoreDetails: {
value: 21.34803581237793,
description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:',
details: [
{
value: 21.34803581237793,
description: '(imdb.rating * scores)',
details: []
}
]
}
},
{
title: 'X-Men',
score: 21.34803581237793,
scoreDetails: {
value: 21.34803581237793,
description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:',
details: [
{
value: 21.34803581237793,
description: '(imdb.rating * scores)',
details: []
}
]
}
},
{
title: 'Matchstick Men',
score: 21.05954933166504,
scoreDetails: {
value: 21.05954933166504,
description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:',
details: [
{
value: 21.05954933166504,
description: '(imdb.rating * scores)',
details: []
}
]
}
}
]
1db.movies.aggregate([
2 {
3 "$search": {
4 "text": {
5 "path": "title",
6 "query": "men",
7 "score": {
8 "function":{
9 "constant": 3
10 }
11 }
12 },
13 "scoreDetails": true
14 }
15 },
16 {
17 $limit: 5
18 },
19 {
20 $project: {
21 "_id": 0,
22 "title": 1,
23 "score": { "$meta": "searchScore" },
24 "scoreDetails": {"$meta": "searchScoreDetails"}
25 }
26 }
27])
[
{
title: 'Men Without Women',
score: 3,
scoreDetails: {
value: 3,
description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:',
details: [ { value: 3, description: 'constant(3.0)', details: [] } ]
}
},
{
title: 'One Hundred Men and a Girl',
score: 3,
scoreDetails: {
value: 3,
description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:',
details: [ { value: 3, description: 'constant(3.0)', details: [] } ]
}
},
{
title: 'Of Mice and Men',
score: 3,
scoreDetails: {
value: 3,
description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:',
details: [ { value: 3, description: 'constant(3.0)', details: [] } ]
}
},
{
title: "All the King's Men",
score: 3,
scoreDetails: {
value: 3,
description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:',
details: [ { value: 3, description: 'constant(3.0)', details: [] } ]
}
},
{
title: 'The Men',
score: 3,
scoreDetails: {
value: 3,
description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:',
details: [ { value: 3, description: 'constant(3.0)', details: [] } ]
}
}
]
1db.movies.aggregate([
2 {
3 "$search": {
4 "text": {
5 "path": "title",
6 "query": "shop",
7 "score": {
8 "function":{
9 "gauss": {
10 "path": {
11 "value": "imdb.rating",
12 "undefined": 4.6
13 },
14 "origin": 9.5,
15 "scale": 5,
16 "offset": 0,
17 "decay": 0.5
18 }
19 }
20 }
21 },
22 "scoreDetails": true
23 }
24 },
25 {
26 "$limit": 10
27 },
28 {
29 "$project": {
30 "_id": 0,
31 "title": 1,
32 "score": { "$meta": "searchScore" },
33 "scoreDetails": {"$meta": "searchScoreDetails"}
34 }
35 }
36])
[
{
title: 'The Shop Around the Corner',
score: 0.9471074342727661,
scoreDetails: {
value: 0.9471074342727661,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.9471074342727661,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
},
{
title: 'Exit Through the Gift Shop',
score: 0.9471074342727661,
scoreDetails: {
value: 0.9471074342727661,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.9471074342727661,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
},
{
title: 'The Shop on Main Street',
score: 0.9395227432250977,
scoreDetails: {
value: 0.9395227432250977,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.9395227432250977,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
},
{
title: 'Chop Shop',
score: 0.8849083781242371,
scoreDetails: {
value: 0.8849083781242371,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.8849083781242371,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
},
{
title: 'Little Shop of Horrors',
score: 0.8290896415710449,
scoreDetails: {
value: 0.8290896415710449,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.8290896415710449,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
},
{
title: 'The Suicide Shop',
score: 0.7257778644561768,
scoreDetails: {
value: 0.7257778644561768,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.7257778644561768,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
},
{
title: 'A Woman, a Gun and a Noodle Shop',
score: 0.6559237241744995,
scoreDetails: {
value: 0.6559237241744995,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.6559237241744995,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
},
{
title: 'Beauty Shop',
score: 0.6274620294570923,
scoreDetails: {
value: 0.6274620294570923,
description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:',
details: [
{
value: 0.6274620294570923,
description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))',
details: []
}
]
}
}
]
1db.movies.aggregate([{
2 "$search": {
3 "text": {
4 "path": "title",
5 "query": "men",
6 "score": {
7 "function":{
8 "path": {
9 "value": "imdb.rating",
10 "undefined": 4.6
11 }
12 }
13 }
14 },
15 "scoreDetails": true
16 }
17},
18{
19 $limit: 5
20},
21{
22 $project: {
23 "_id": 0,
24 "title": 1,
25 "score": { "$meta": "searchScore" },
26 "scoreDetails": {"$meta": "searchScoreDetails"}
27 }
28}])
[
{
title: '12 Angry Men',
score: 8.899999618530273,
scoreDetails: {
value: 8.899999618530273,
description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:',
details: [
{
value: 8.899999618530273,
description: 'imdb.rating',
details: []
}
]
}
},
{
title: 'The Men Who Built America',
score: 8.600000381469727,
scoreDetails: {
value: 8.600000381469727,
description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:',
details: [
{
value: 8.600000381469727,
description: 'imdb.rating',
details: []
}
]
}
},
{
title: 'No Country for Old Men',
score: 8.100000381469727,
scoreDetails: {
value: 8.100000381469727,
description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:',
details: [
{
value: 8.100000381469727,
description: 'imdb.rating',
details: []
}
]
}
},
{
title: 'X-Men: Days of Future Past',
score: 8.100000381469727,
scoreDetails: {
value: 8.100000381469727,
description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:',
details: [
{
value: 8.100000381469727,
description: 'imdb.rating',
details: []
}
]
}
},
{
title: 'The Best of Men',
score: 8.100000381469727,
scoreDetails: {
value: 8.100000381469727,
description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:',
details: [
{
value: 8.100000381469727,
description: 'imdb.rating',
details: []
}
]
}
}
]
1db.movies.aggregate([{
2 "$search": {
3 "text": {
4 "path": "title",
5 "query": "men",
6 "score": {
7 "function":{
8 "score": "relevance"
9 }
10 }
11 },
12 "scoreDetails": true
13 }
14},
15{
16 $limit: 5
17},
18{
19 $project: {
20 "_id": 0,
21 "title": 1,
22 "score": { "$meta": "searchScore" },
23 "scoreDetails": {"$meta": "searchScoreDetails"}
24 }
25}])
[
{
title: 'Men...',
score: 3.4457783699035645,
scoreDetails: {
value: 3.4457783699035645,
description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:',
details: [
{
value: 3.4457783699035645,
description: 'weight($type:string/title:men in 4705) [BM25Similarity], result of:',
details: [
{
value: 3.4457783699035645,
description: 'score(freq=1.0), computed as boost * idf * tf from:',
details: [
{
value: 5.5606818199157715,
description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
details: [
{
value: 90,
description: 'n, number of documents containing term',
details: []
},
{
value: 23529,
description: 'N, total number of documents with field',
details: []
}
]
},
{
value: 0.6196683645248413,
description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
details: [
{
value: 1,
description: 'freq, occurrences of term within document',
details: []
},
{
value: 1.2000000476837158,
description: 'k1, term saturation parameter',
details: []
},
{
value: 0.75,
description: 'b, length normalization parameter',
details: []
},
{
value: 1,
description: 'dl, length of field',
details: []
},
{
value: 2.868375301361084,
description: 'avgdl, average length of field',
details: []
}
]
}
]
}
]
}
]
}
},
{
title: 'The Men',
score: 2.8848698139190674,
scoreDetails: {
value: 2.8848698139190674,
description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'weight($type:string/title:men in 870) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'score(freq=1.0), computed as boost * idf * tf from:',
details: [
{
value: 5.5606818199157715,
description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
details: [
{
value: 90,
description: 'n, number of documents containing term',
details: []
},
{
value: 23529,
description: 'N, total number of documents with field',
details: []
}
]
},
{
value: 0.5187978744506836,
description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
details: [
{
value: 1,
description: 'freq, occurrences of term within document',
details: []
},
{
value: 1.2000000476837158,
description: 'k1, term saturation parameter',
details: []
},
{
value: 0.75,
description: 'b, length normalization parameter',
details: []
},
{
value: 2,
description: 'dl, length of field',
details: []
},
{
value: 2.868375301361084,
description: 'avgdl, average length of field',
details: []
}
]
}
]
}
]
}
]
}
},
{
title: 'Simple Men',
score: 2.8848698139190674,
scoreDetails: {
value: 2.8848698139190674,
description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'weight($type:string/title:men in 6371) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'score(freq=1.0), computed as boost * idf * tf from:',
details: [
{
value: 5.5606818199157715,
description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
details: [
{
value: 90,
description: 'n, number of documents containing term',
details: []
},
{
value: 23529,
description: 'N, total number of documents with field',
details: []
}
]
},
{
value: 0.5187978744506836,
description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
details: [
{
value: 1,
description: 'freq, occurrences of term within document',
details: []
},
{
value: 1.2000000476837158,
description: 'k1, term saturation parameter',
details: []
},
{
value: 0.75,
description: 'b, length normalization parameter',
details: []
},
{
value: 2,
description: 'dl, length of field',
details: []
},
{
value: 2.868375301361084,
description: 'avgdl, average length of field',
details: []
}
]
}
]
}
]
}
]
}
},
{
title: 'X-Men',
score: 2.8848698139190674,
scoreDetails: {
value: 2.8848698139190674,
description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'weight($type:string/title:men in 8368) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'score(freq=1.0), computed as boost * idf * tf from:',
details: [
{
value: 5.5606818199157715,
description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
details: [
{
value: 90,
description: 'n, number of documents containing term',
details: []
},
{
value: 23529,
description: 'N, total number of documents with field',
details: []
}
]
},
{
value: 0.5187978744506836,
description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
details: [
{
value: 1,
description: 'freq, occurrences of term within document',
details: []
},
{
value: 1.2000000476837158,
description: 'k1, term saturation parameter',
details: []
},
{
value: 0.75,
description: 'b, length normalization parameter',
details: []
},
{
value: 2,
description: 'dl, length of field',
details: []
},
{
value: 2.868375301361084,
description: 'avgdl, average length of field',
details: []
}
]
}
]
}
]
}
]
}
},
{
title: 'Mystery Men',
score: 2.8848698139190674,
scoreDetails: {
value: 2.8848698139190674,
description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'weight($type:string/title:men in 8601) [BM25Similarity], result of:',
details: [
{
value: 2.8848698139190674,
description: 'score(freq=1.0), computed as boost * idf * tf from:',
details: [
{
value: 5.5606818199157715,
description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:',
details: [
{
value: 90,
description: 'n, number of documents containing term',
details: []
},
{
value: 23529,
description: 'N, total number of documents with field',
details: []
}
]
},
{
value: 0.5187978744506836,
description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:',
details: [
{
value: 1,
description: 'freq, occurrences of term within document',
details: []
},
{
value: 1.2000000476837158,
description: 'k1, term saturation parameter',
details: []
},
{
value: 0.75,
description: 'b, length normalization parameter',
details: []
},
{
value: 2,
description: 'dl, length of field',
details: []
},
{
value: 2.868375301361084,
description: 'avgdl, average length of field',
details: []
}
]
}
]
}
]
}
]
}
}
]
1db.movies.aggregate([{
2 "$search": {
3 "text": {
4 "path": "title",
5 "query": "men",
6 "score": {
7 "function": {
8 "log": {
9 "path": {
10 "value": "imdb.rating",
11 "undefined": 10
12 }
13 }
14 }
15 }
16 },
17 "scoreDetails": true
18 }
19},
20{
21 $limit: 5
22},
23{
24 $project: {
25 "_id": 0,
26 "title": 1,
27 "score": { "$meta": "searchScore" },
28 "scoreDetails": {"$meta": "searchScoreDetails"}
29 }
30}])
[
{
title: '12 Angry Men',
score: 0.9493899941444397,
scoreDetails: {
value: 0.9493899941444397,
description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:',
details: [
{
value: 0.9493899941444397,
description: 'log(imdb.rating)',
details: []
}
]
}
},
{
title: 'The Men Who Built America',
score: 0.9344984292984009,
scoreDetails: {
value: 0.9344984292984009,
description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:',
details: [
{
value: 0.9344984292984009,
description: 'log(imdb.rating)',
details: []
}
]
}
},
{
title: 'No Country for Old Men',
score: 0.9084849953651428,
scoreDetails: {
value: 0.9084849953651428,
description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:',
details: [
{
value: 0.9084849953651428,
description: 'log(imdb.rating)',
details: []
}
]
}
},
{
title: 'X-Men: Days of Future Past',
score: 0.9084849953651428,
scoreDetails: {
value: 0.9084849953651428,
description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:',
details: [
{
value: 0.9084849953651428,
description: 'log(imdb.rating)',
details: []
}
]
}
},
{
title: 'The Best of Men',
score: 0.9084849953651428,
scoreDetails: {
value: 0.9084849953651428,
description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:',
details: [
{
value: 0.9084849953651428,
description: 'log(imdb.rating)',
details: []
}
]
}
}
]

Voltar

Opções de pontuação

Nesta página