このチュートリアルでは、 MongoDB ベクトル検索ツールを使用して PDF ドキュメントを分析できるAIエージェントを含む チーム を構築します。
MongoDB CRUDAI 統合の詳細については、「 MongoDBと CRC の統合 」を参照してください。
前提条件
Atlas の サンプル データ セット からの映画データを含むコレクションを使用します。
CRUDAI がインストールされました。詳しくは、インストールを参照してください。
次のいずれか 1 つ。
MongoDBバージョン 6.0.11を実行中Atlas クラスター7.0.2、またはそれ以降IPアドレスが Atlas プロジェクトのアクセス リストに含まれていることを確認します。
Atlas CLI を使用して作成されたローカル Atlas 配置。詳細については、「 Atlas クラスターのローカル配置 」を参照してください。
OpenAI APIキー。APIリクエストに使用できるクレジットを持つ OpenAI アカウントが必要です。OpenAI アカウントの登録の詳細については、OpenAI APIウェブサイト を参照してください。
注意
Pythonバージョンの互換性は、CbrewAI の公式ドキュメントとは異なる場合があります。書き込み時に、crewai-tools
パッケージはembedchain
に依存しています。これには、3.9 から 3.13.2 までのPythonバージョンが必要です。(この値を含む)。
チームの構築と実行
チームを構築および実行するには、次の手順を実行します。
環境を設定します。
ターミナルで次のコマンドを実行して、
crewai-mongodb-project
という名前の新しいディレクトリを作成し、必要な依存関係をインストールします。mkdir crewai-mongodb-project cd crewai-mongodb-project pip install 'crewai-tools[mongodb]' python-dotenv langchain-community プロジェクトで、
.env
ファイルを作成し、次の行を追加します。OPENAI_API_KEY="<openai-api-key>" MONGODB_URI="<connection-string>" 注意
<connection-string>
を Atlas クラスターまたはローカル Atlas 配置の接続文字列に置き換えます。接続stringには、次の形式を使用する必要があります。
mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net 詳しくは、ドライバーを使用してクラスターに接続する を参照してください。
接続stringには、次の形式を使用する必要があります。
mongodb://localhost:<port-number>/?directConnection=true 詳細については、「接続文字列 」を参照してください。
チームを構築します。
プロジェクトに main.py
という名前のファイルを作成し、次のコードを貼り付けます。
from crewai import Agent, Task, Crew, Process, LLM from crewai_tools import MongoDBVectorSearchTool, MongoDBVectorSearchConfig from langchain_community.document_loaders import PyPDFLoader from dotenv import load_dotenv import os, time load_dotenv() def rag_agent(): """ An agent that uses RAG to analyze recent MongoDB announcements. """ # Configure the vector search tool tool = MongoDBVectorSearchTool( connection_string = os.environ.get("MONGODB_URI"), database_name = "crewai_db", collection_name = "test" ) # Connect to MongoDB collection and delete all documents coll = tool._coll coll.delete_many({}) # Load PDF from URL and insert documents into MongoDB print("Loading MongoDB AI announcements PDF...") loader = PyPDFLoader("https://investors.mongodb.com/node/13556/pdf") tool.add_texts([i.page_content for i in loader.load()]) # Create the vector search index print("Creating vector search index...") if not any([ix["name"] == "vector_index" for ix in coll.list_search_indexes()]): tool.create_vector_search_index(dimensions=1536, auto_index_timeout=60) # Wait for index initial sync to complete n_docs = coll.count_documents({}) start = time.monotonic() while time.monotonic() - start <= 60: if len(tool._run("test query")) == n_docs: print("Index is ready for queries") break else: time.sleep(1) # Specify a custom vector search query (optional) tool.query_config = MongoDBVectorSearchConfig( limit=3, score_threshold=0.75 ) # Test the tool print("Testing the tool...") print(tool.run(query="AI announcements")) # Assemble a crew by specifying an agent and its task researcher = Agent( role="MongoDB Announcement Researcher", goal="Find and extract key information about MongoDB's recent announcements and developments", backstory="You're specialized in analyzing business and technology announcements", verbose=False, tools=[tool], llm=LLM(model="gpt-4o"), # Customize to your LLM of choice ) research_task = Task( description="Research MongoDB's recent AI announcements and developments", expected_output="A summary of MongoDB's latest AI initiatives, partnerships, and features", agent=researcher, ) crew = Crew( agents=[researcher], tasks=[research_task], process=Process.sequential, verbose=False ) # Get the results and print the analysis print("Running the crew...") result = crew.kickoff() print("\n" + "="*50 + "\nMONGODB AI ANNOUNCEMENTS ANALYSIS:\n" + "="*50) print(result.raw) return result if __name__ == "__main__": rag_agent()
このスクリプトは、次の処理を実行します。
ファイルを実行します。
次のコマンドを実行して、スクリプトを実行します。
uv run main.py
Loading MongoDB AI announcements PDF... Creating vector search index... Testing the tool... Using Tool: MongoDBVectorSearchTool [{"_id": {"$oid": "689baa5e6907244d329d0586"}, "text": "MongoDB Strengthens Foundation for AI Applications with Product Innovations and Expanded\nPartner Ecosystem\nAugust 11, 2025\nNew Voyage AI models introduce context awareness and set new accuracy benchmarks\u2014at industry-leading price-performance\nMongoDB's AI ecosystem expands AI framework, agentic evaluation, and agentic workflow orchestration capabilities\nApproximately 8,000 startups, including Laurel and Mercor, have chosen MongoDB to help build their AI projects ... (truncated) Running the crew... ================================================== MONGODB AI ANNOUNCEMENTS ANALYSIS: ================================================== **MongoDB Strengthens Foundation for AI Applications with Product Innovations and Expanded Partner Ecosystem** **August 11, 2025** MongoDB announced a range of product innovations and AI partner ecosystem expansions at Ai4 2025 to make it faster and easier for customers to build accurate, trustworthy, and reliable AI applications at scale. The company is providing industry-leading embedding models and a fully integrated, AI-ready data platform, alongside assembling a world-class ecosystem of AI partners to deliver reliable and cost-effective AI solutions. **Key Highlights from AI Initiatives:** ### AI Innovations: - **Voyage AI Models**: - MongoDB introduced context-aware embedding models, achieving better retrieval accuracy without requiring metadata hacks or pipeline gymnastics. - New model variants, such as **voyage-context-3**, **voyage-3.5**, and **voyage-3.5-lite**, deliver groundbreaking retrieval accuracy at competitive price-performance metrics. - **Instruction-following reranking models** like `rerank-2.5` and `rerank-2.5-lite` enable developers to improve retrieval accuracy further. - **MongoDB MCP Server**: - Launched as a public preview, the MongoDB Model Context Protocol (MCP) Server enables direct integration with popular tools like GitHub CoPilot in Visual Studio Code, Anthropic's Claude, Cursor, and Windsurf. - Thousands of users have been actively building applications leveraging this new protocol. ### Partnerships: MongoDB expanded its AI partner ecosystem to provide customers with streamlined workflows and reliable AI applications: - **Galileo**: - A reliability and observability platform for AI applications that offers continuous evaluations and monitoring for MongoDB-based projects. - **Temporal**: - A Durable Execution platform that empowers developers to orchestrate scalable, resilient AI use cases like retrieval-augmented generation (RAG) systems and context engineering pipelines. Temporal ensures that AI solutions can operate smoothly across distinct failures and interactions. - **LangChain**: - MongoDB's partnership with LangChain has facilitated advancements like natural language querying, agent-based system creation, and **GraphRAG** for enhanced LLM transparency. Developers can build sophisticated AI systems deploying real-time, proprietary MongoDB data. ### Developer Engagement: - MongoDB has seen substantial adoption among both startups and enterprises: - Approximately 8,000 startups selected MongoDB for AI projects, including Laurel (timekeeping startup) and Mercor (AI-based talent matching). - Large enterprises like Vonage, LGU+, and The Financial Times also rely on MongoDB for scalable AI infrastructure. ### Thought Leadership: Andrew Davidson, SVP of Products at MongoDB, emphasized the importance of robust database systems in the era of AI: - "Modern AI applications require a database combining advanced capabilities such as integrated vector search and embedding models. By consolidating the AI stack, MongoDB is empowering developers to deliver innovative AI solutions faster than ever." Fred Roma, SVP of Engineering, further highlighted the challenge of scaling AI due to complexity in fine-tuning models, high expenses, and integration barriers: - "MongoDB's focus remains on designing models that achieve better functionality, reliability, and affordability for developers leveraging AI applications." ### About MongoDB: MongoDB, headquartered in New York, provides a unified database platform powering next-gen applications across industries. Its comprehensive platform integrates operational data, search, real-time analytics, and AI-powered retrieval, supporting millions of developers globally. MongoDB boasts over 50,000 customers and supports a growing AI application ecosystem. For more information on MongoDB's AI endeavors, visit [mongodb.com](https://www.mongodb.com). ### Sources: Original announcement and additional multimedia available at [PRNewswire](https://www.prnewswire.com/news-releases/mongodb-strengthens-foundation-for-ai-applications-with-product-innovations-and-expanded-partner-ecosystem-302526003.html). Contact: **press@mongodb.com** for press inquiries.