Overview
In this guide, you can learn how to create and manage MongoDB Search and MongoDB Vector Search indexes. These indexes allow you to use the following features:
MongoDB Search: Perform fast, full-text searches
MongoDB Vector Search: Perform semantic (similarity) searches on vector embeddings
MongoDB Search and MongoDB Vector Search indexes specify which fields to index, specify how these fields are indexed, and set other optional configurations.
Note
MongoDB Search index-management methods run asynchronously. The driver methods can return a result before the desired action completes on the server.
This guide explains how to perform the following actions to manage your MongoDB Search and MongoDB Vector Search indexes:
Note
Sample Data
The examples in this guide use the embedded_movies collection
in the sample_mflix database, which is one of the Atlas sample
datasets. For instructions on importing the Atlas sample data, see
Load Sample Data in the Atlas documentation.
Create a Search Index Model
To create a MongoDB Search or MongoDB Vector Search index, you must first build a
CreateSearchIndexModel instance that sets your index specifications.
The CreateSearchIndexModel has the following properties:
Property | Type | Description |
|---|---|---|
|
| Specifies the index definition. If you omit this setting, the driver creates a MongoDB Search index with dynamic mappings. |
|
| Sets the index name. If you omit this setting, the
driver sets the name to |
|
| Sets the index type. If you omit this setting, the driver creates a MongoDB Search index by default. |
To learn more about MongoDB Search field mappings, see Define Field Mappings in the Atlas documentation.
To learn more about defining MongoDB Vector Search indexes, see How to Index Fields for Vector Search in the Atlas documentation.
Example Models
The following example creates a CreateSearchIndexModel instance to provide
specifications for an index named search_idx. The code specifies static
mappings of the title and released fields:
var def = new BsonDocument { { "mappings", new BsonDocument { { "dynamic", false }, { "fields", new BsonDocument { { "title", new BsonDocument { {"type", "string" } } }, { "released", new BsonDocument { { "type", "date" } } } } } } } }; var indexModel = new CreateSearchIndexModel( "search_idx", SearchIndexType.Search, def );
The following example creates a CreateSearchIndexModel instance to provide
specifications for an index named vs_idx. The code specifies the
embedding path as plot_embedding, indexes 1536 dimensions, and
uses the "euclidean" vector similarity function:
var def = new BsonDocument { { "fields", new BsonArray { new BsonDocument { { "type", "vector" }, { "path", "plot_embedding" }, { "numDimensions", 1536 }, { "similarity", "euclidean" } } } } }; var indexModel = new CreateSearchIndexModel( "vs_idx", SearchIndexType.VectorSearch, def );
Create a Search Index
You can create a MongoDB Search or MongoDB Vector Search index on a collection by
calling the SearchIndexes.CreateOne() method on an IMongoCollection
instance. This method accepts an index model as a parameter, specified
in a CreateSearchIndexModel instance.
Example
The following example creates a MongoDB Search index on the
embedded_movies collection. The code creates a CreateSearchIndexModel
that sets the index name and enables dynamic mapping. Then, the code
passes the CreateSearchIndexModel instance to the SearchIndexes.CreateOne()
method to create the MongoDB Search index:
var indexModel = new CreateSearchIndexModel( "example_index", SearchIndexType.Search, new BsonDocument { { "mappings", new BsonDocument { { "dynamic", true }, } } } ); var result = movieCollection.SearchIndexes.CreateOne(indexModel); Console.WriteLine("Created MongoDB Search index:\n{0}", result);
Created MongoDB Search index: "example_index"
Create Multiple Search Indexes
You can create multiple MongoDB Search and MongoDB Vector Search indexes
by calling the SearchIndexes.CreateMany() method on an IMongoCollection
instance. This method accepts an IEnumerable of
CreateSearchIndexModel instances as a parameter.
Example
This example performs the following actions:
Creates a
CreateSearchIndexModelinstance that specifies a MongoDB Search index namedas_idxCreates a
CreateSearchIndexModelinstance that specifies a MongoDB Vector Search index namedvs_idxPasses a
Listof bothCreateSearchIndexModelinstances to theSearchIndexes.CreateMany()methodCreates the MongoDB Search and MongoDB Vector Search indexes on the
embedded_moviescollection
var searchModel = new CreateSearchIndexModel( "as_idx", SearchIndexType.Search, new BsonDocument { { "mappings", new BsonDocument { { "dynamic", true }, } } } ); var vectorModel = new CreateSearchIndexModel( "vs_idx", SearchIndexType.VectorSearch, new BsonDocument { { "fields", new BsonArray { new BsonDocument { { "type", "vector" }, { "path", "plot_embedding" }, { "numDimensions", 1536 }, { "similarity", "euclidean" } } } } } ); var models = new List<CreateSearchIndexModel> { searchModel, vectorModel }; var indexes = movieCollection.SearchIndexes.CreateMany(models); Console.WriteLine("Created Search indexes:\n{0} {1}", indexes.ToArray());
Created Search indexes: as_idx vs_idx
List Search Indexes
You can access information about a collection's existing MongoDB Search
and MongoDB Vector Search indexes by calling the SearchIndexes.List()
method on the collection.
Example
The following example accesses information about the MongoDB Search and
MongoDB Vector Search indexes created in the Create Multiple Search Indexes
section of this page. The code calls the SearchIndexes.List()
method and prints a list of the MongoDB Search and MongoDB Vector Search indexes
on the collection:
var indexesList = movieCollection.SearchIndexes.List().ToList(); foreach (var i in indexesList) { Console.WriteLine(i); }
{ "id": "...", "name": "as_idx", "status": "READY", "queryable": true, "latestDefinitionVersion": {...}, "latestDefinition": { "mappings": { "dynamic": true } }, "statusDetail": [...] } { "id": "...", "name": "vs_idx", "type": "vectorSearch", "status": "READY", "queryable": true, ..., "latestDefinition": { "fields": [{ "type": "vector", "path": "plot_embedding", "numDimensions": 1536, "similarity": "euclidean" }] }, "statusDetail": [...] }
Update a Search Index
You can update a MongoDB Search or MongoDB Vector Search index by calling the
SearchIndexes.Update() method on an IMongoCollection instance. This
method accepts the following parameters:
Name of the index to update
Modified index definition document
Example
The following example updates the Vector Search index named vs_index
created in the Create Multiple Search Indexes section of this page. The code
creates a new index definition document that instructs the index to use
"dotProduct" as the vector similarity function. Then, the code calls
the SearchIndexes.Update() method to update the index:
var updatedDef = new BsonDocument { { "fields", new BsonArray { new BsonDocument { { "type", "vector" }, { "path", "plot_embedding" }, { "numDimensions", 1536 }, { "similarity", "dotProduct" } } } } }; movieCollection.SearchIndexes.Update("vs_index", updatedDef);
Delete a Search Index
You can delete a MongoDB Search or MongoDB Vector Search index by calling the
SearchIndexes.DropOne() method on an IMongoCollection instance. This
method accepts the name of the index to delete as a parameter.
Example
The following example deletes the MongoDB Search index named example_index
created in the Create a Search Index section of this page. The code
passes the index name to the SearchIndexes.DropOne() method to delete the index:
movieCollection.SearchIndexes.DropOne("example_index");
Additional Information
To learn about other indexes you can create by using the .NET/C# Driver, see the Create and Manage Indexes guide.
To learn more about MongoDB Search, see the following Atlas documentation:
To learn more about MongoDB Vector Search, see the following Atlas documentation:
API Documentation
To learn more about the methods and types mentioned in this guide, see the following API documentation: