Overview
In this guide, you can learn how to create and manage MongoDB Search and MongoDB Vector Search indexes. These indexes allow you to use the following features:
MongoDB Search: Perform fast, full-text searches
MongoDB Vector Search: Perform semantic (similarity) searches on vector embeddings
MongoDB Search and MongoDB Vector Search indexes specify which fields to index, specify how these fields are indexed, and set other optional configurations.
Note
MongoDB Search index-management methods run asynchronously. The driver methods can return a result before the desired action completes on the server.
This guide explains how to perform the following actions to manage your MongoDB Search and MongoDB Vector Search indexes:
Note
Sample Data
The examples in this guide use the embedded_movies collection
in the sample_mflix database, which is one of the Atlas sample
datasets. For instructions on importing the Atlas sample data, see
Load Sample Data in the Atlas documentation.
Create a Search Index Model
The following sections describe how to create index models for MongoDB Search and MongoDB Vector Search indexes.
MongoDB Search Index Model
To create a MongoDB Search index, you must construct a CreateSearchIndexModel instance
that sets your index specifications.
The CreateSearchIndexModel class has the following properties:
Property | Type | Description |
|---|---|---|
|
| Specifies the index definition. If you omit this setting, the driver creates a MongoDB Search index with dynamic mappings. |
|
| Sets the index name. If you omit this setting, the
driver sets the name to |
|
| Sets the index type. If you omit this setting, the driver creates a MongoDB Search index by default. |
The following example creates a CreateSearchIndexModel instance to provide
specifications for an index named search_idx. The code specifies static
mappings of the title and released fields:
var def = new BsonDocument { { "mappings", new BsonDocument { { "dynamic", false }, { "fields", new BsonDocument { { "title", new BsonDocument { {"type", "string" } } }, { "released", new BsonDocument { { "type", "date" } } } } } } } }; var indexModel = new CreateSearchIndexModel( "search_idx", SearchIndexType.Search, def );
To learn more about MongoDB Search field mappings, see Define Field Mappings in the Atlas documentation.
MongoDB Vector Search Index Model
To create a MongoDB Vector Search index, you must construct a CreateVectorSearchIndexModel
instance that sets your index specifications.
The CreateVectorSearchIndexModel class inherits from the CreateSearchIndexModel
class and has the following additional properties:
Property | Type | Description |
|---|---|---|
|
| Specifies the field that contains the vectors to index. |
|
| Sets the vector similarity function to use to search for the top K-nearest neighbors. |
|
| Specifies the number of dimensions that the search enforces at index-time and query-time. |
|
| Specifies the fields that the search uses as filters in the vector query. |
|
| Specifies the type of automatic vector quantization for the search vectors. If you don't set this property, the search uses no automatic quantization. |
|
| Sets the maximum number of edges that a node can have in the Hierarchical Navigable Small Worlds graph. |
|
| Sets the maximum number of nodes to evaluate to find the closest neighbors to connect to a new node. |
The following example creates a CreateVectorSearchIndexModel instance to provide
specifications for an index named vs_idx. The code specifies the
embedding path as PlotEmbedding, a class property that corresponds to the
plot_embedding field in MongoDB. It also indexes 1536 dimensions, and uses the
Euclidean vector similarity function.
var model = new CreateVectorSearchIndexModel<Movie> ( model => model.PlotEmbedding, "vs_idx", VectorSimilarity.Euclidean, 1536);
To learn more about defining MongoDB Vector Search indexes, see How to Index Fields for Vector Search in the Atlas documentation.
MongoDB Auto-Embedding Search Index Model
You can use a CreateAutoEmbeddingVectorSearchIndexModel index model to create a
MongoDB Vector Search index that automatically generates vector embeddings for text fields.
The CreateAutoEmbeddingVectorSearchIndexModel has the following properties,
in addition to the properties inherited from CreateVectorSearchIndexModelBase<TDocument>:
Property | Type | Description |
|---|---|---|
|
| Specifies the name of the embedding model to use for generating vector embeddings. For a list of supported models, see Text Embeddings in the VoyageAI documentation. |
|
| Specifies the type of data to embed. Currently, the only supported modality is
|
The following example creates a CreateAutoEmbeddingVectorSearchIndexModel
instance that provides specifications for an index named auto_embedded_index. This index
uses the "voyage-4" embedding model to automatically generate vector embeddings for the
plot field, and also includes optional filters for the runtime and year fields:
var model = new CreateAutoEmbeddingVectorSearchIndexModel<EmbeddedMovie>( m => m.Plot, "auto_embedding_index", "voyage-4", m => m.Runtime, m => m.Year // Optional filter fields );
Create a Search Index
You can create a MongoDB Search or MongoDB Vector Search index on a collection by
calling the SearchIndexes.CreateOne() method on an IMongoCollection
instance. This method accepts an index model as a parameter, specified
in a CreateSearchIndexModel or CreateVectorSearchIndexModel instance.
Example
The following example creates a MongoDB Search index on the
embedded_movies collection. The code creates a CreateSearchIndexModel
that sets the index name and enables dynamic mapping. Then, the code
passes the CreateSearchIndexModel instance to the SearchIndexes.CreateOne()
method to create the MongoDB Search index:
var indexModel = new CreateSearchIndexModel( "example_index", SearchIndexType.Search, new BsonDocument { { "mappings", new BsonDocument { { "dynamic", true }, } } } ); var result = movieCollection.SearchIndexes.CreateOne(indexModel); Console.WriteLine("Created MongoDB Search index:\n{0}", result);
Created MongoDB Search index: "example_index"
Create Multiple Search Indexes
You can create multiple MongoDB Search and MongoDB Vector Search indexes
by calling the SearchIndexes.CreateMany() method on an IMongoCollection
instance. This method accepts an IEnumerable of
CreateSearchIndexModel or CreateVectorSearchIndexModel instances as a parameter.
Example
This example performs the following actions:
Creates a
CreateSearchIndexModelinstance that specifies a MongoDB Search index namedas_idxCreates a
CreateVectorSearchIndexModelinstance that specifies a MongoDB Vector Search index namedvs_idxPasses a
Listof theCreateSearchIndexModelandCreateVectorSearchIndexModelinstances to theSearchIndexes.CreateMany()methodCreates the MongoDB Search and MongoDB Vector Search indexes on the
embedded_moviescollection
var searchModel = new CreateSearchIndexModel( "as_idx", SearchIndexType.Search, new BsonDocument { { "mappings", new BsonDocument { { "dynamic", true }, } } } ); var vectorModel = new CreateVectorSearchIndexModel<Movie>( m => m.PlotEmbedding, "vs_idx", VectorSimilarity.Euclidean, 1536); var models = new List<CreateSearchIndexModel> { searchModel, vectorModel }; var indexes = movieCollection.SearchIndexes.CreateMany(models); Console.WriteLine("Created Search indexes:\n{0} {1}", indexes.ToArray());
Created Search indexes: as_idx vs_idx
List Search Indexes
You can access information about a collection's existing MongoDB Search
and MongoDB Vector Search indexes by calling the SearchIndexes.List()
method on the collection.
Example
The following example accesses information about the MongoDB Search and
MongoDB Vector Search indexes created in the Create Multiple Search Indexes
section of this page. The code calls the SearchIndexes.List()
method and prints a list of the MongoDB Search and MongoDB Vector Search indexes
on the collection:
var indexesList = movieCollection.SearchIndexes.List().ToList(); foreach (var i in indexesList) { Console.WriteLine(i); }
{ "id": "...", "name": "as_idx", "status": "READY", "queryable": true, "latestDefinitionVersion": {...}, "latestDefinition": { "mappings": { "dynamic": true } }, "statusDetail": [...] } { "id": "...", "name": "vs_idx", "type": "vectorSearch", "status": "READY", "queryable": true, ..., "latestDefinition": { "fields": [{ "type": "vector", "path": "plot_embedding", "numDimensions": 1536, "similarity": "euclidean" }] }, "statusDetail": [...] }
Update a Search Index
You can update a MongoDB Search or MongoDB Vector Search index by calling the
SearchIndexes.Update() method on an IMongoCollection instance. This
method accepts the following parameters:
Name of the index to update
Modified index definition document
Example
The following example updates the Vector Search index named vs_index
created in the Create Multiple Search Indexes section of this page. The code
creates a new index definition document that instructs the index to use
"dotProduct" as the vector similarity function. Then, the code calls
the SearchIndexes.Update() method to update the index:
var updatedDef = new BsonDocument { { "fields", new BsonArray { new BsonDocument { { "type", "vector" }, { "path", "plot_embedding" }, { "numDimensions", 1536 }, { "similarity", "dotProduct" } } } } }; movieCollection.SearchIndexes.Update("vs_index", updatedDef);
Delete a Search Index
You can delete a MongoDB Search or MongoDB Vector Search index by calling the
SearchIndexes.DropOne() method on an IMongoCollection instance. This
method accepts the name of the index to delete as a parameter.
Example
The following example deletes the MongoDB Search index named example_index
created in the Create a Search Index section of this page. The code
passes the index name to the SearchIndexes.DropOne() method to delete the index:
movieCollection.SearchIndexes.DropOne("example_index");
Additional Information
To learn about other indexes you can create by using the .NET/C# Driver, see the Create and Manage Indexes guide.
To learn more about MongoDB Search, see the following Atlas documentation:
To learn more about MongoDB Vector Search, see the following Atlas documentation:
API Documentation
To learn more about the methods and types mentioned in this guide, see the following API documentation: