Join us Sept 17 at .local NYC! Use code WEB50 to save 50% on tickets. Learn more >
MongoDB Event
Docs Menu
Docs Home
/
MongoDB MCP サーバー

MongoDB MCP Server の使用例

このページでは、自然言語プロンプトとAIクライアントから返された結果の例を示します。例は、 MongoDB MCP Server を使用して Atlas クラスター内のサンプルデータを操作する方法を示しています。

AIクライアントでプロンプトを入力します。AIクライアントはプロンプトで要求されたタスクを実行し、結果を返します。返される出力は、使用するAIクライアントと大規模言語モデルによって異なります。

Atlas の組織識別子とプロジェクト識別子、パスワード、その他の個人情報は、セキュリティのために、このページの出力例では XXX として表示されています。同様のプロンプトを実行すると、出力には完全な情報が含まれます。

  • MCP サーバーの設定

  • Atlasのサンプルデータをクラスターにロードする

注意

MCP Server構成ファイルの例には、データへの読み取り専用アクセスを確保するために --readOnly が含まれています。通常は、データ変更を防ぐために読み取り専用モードを有効にします。

書込み操作を有効にするには、--readOnly を省略するか、オペレーティング システムの環境変数 MDB_MCP_READ_ONLYfalse に設定します。詳細については、MCP サーバーの読み取り専用モードの有効化 を参照してください。

MCP Server構成ファイルの例では、typeフィールドを "stdio" に設定しています。

type 次のいずれかに設定できます。

  • "stdio"は、MCP サーバーとの通信に標準の入力と出力を使用します。stdio はほとんどのAIクライアントに適しています。通常は stdio を使用します。

  • "http"、これにより MCP サーバーとのHTTP通信が可能になります。その後、 HTTPを使用して、Webクライアントから MCP Server とやり取りできるようになります。

    警告

    HTTP は、認証とセキュリティを実装せずに本番環境で使用することは推奨されません。

MCP Server構成ファイルの例では、MCP サーバー名も "MongoDB" に設定されています。MCP サーバーの起動後に、サーバー名を MCP サーバーの名前と一致するように変更できます。サーバー名は、 AIクライアントに対して MCP サーバーを識別します。

次のセクションでは、 AIクライアントで実行できるプロンプトの例を示します。

次の例には、Atlas の組織とプロジェクトが示されています。出力には、 AIクライアントから返された結果と、リクエストを実行するためにクライアントが使用したツールの名前が表示されます(atlas-list-orgsatlas-list-projects)。

Show my Atlas organizations and projects
Ran ``atlas-list-orgs``
Ran ``atlas-list-projects``
Here are your MongoDB Atlas organizations and projects:
Organizations:
TestOrganization
Organization ID: XXX
Projects:
TestProject
Project ID: XXX
Organization: TestOrganization
Created: August 7, 2020 at 11:48:55 AM
You have one organization containing one project. This
project contains your TestCluster that we're currently
connected to.

次の例では、現在のクラスター接続で使用可能なデータベースの一覧を返します。

Show my Atlas databases
Ran ``list-databases``
Here are the databases in your Atlas cluster "TestCluster":
Sample Databases:
sample_mflix - 138.4 MB (Movie database with films, theaters, users, comments)
sample_training - 53.6 MB (Training data for learning MongoDB)
sample_airbnb - 55.3 MB (Airbnb listings and reviews data)
sample_analytics - 10.0 MB (Analytics and customer data)
sample_restaurants - 6.8 MB (Restaurant and review data)
sample_weatherdata - 2.7 MB (Weather observation data)
sample_geospatial - 1.3 MB (Geospatial data examples)
sample_supplies - 1.1 MB (Supply chain data)
sample_guides - 41 KB (Getting started guides)
System Databases:
local - 4.1 GB (MongoDB internal database)
admin - 365 KB (Administrative database)
Your cluster contains MongoDB's sample datasets, which are
great for learning and testing. The largest databases are
sample_mflix (movies), sample_training, and sample_airbnb.
Would you like me to explore any specific database or show
you the collections within one of them?

次の例では、 Atlas sample_mflixデータベース内のコレクションの一覧を返します。

Show the collections in the Atlas sample_mflix database
Ran ``list-collections``
Here are the collections in the sample_mflix database:
Core Collections:
movies - Main collection containing movie data
(titles, genres, cast, ratings, etc.)
users - User profiles and account information
comments - User comments and reviews on movies
theaters - Movie theater locations and details
sessions - User session data
Additional Collections:
embedded_movies - Movies collection with embedded/denormalized data structure
The movies collection contains detailed information
about films including plot, cast, directors, ratings,
release dates, and genres. The comments collection links to
movies and users to store user reviews and discussions.
Would you like me to explore any specific collection in more
detail, such as showing sample documents or collection
statistics?

次の例では、映画のコレクションをシリアライザーのジャンル別にまとめています。AIクライアントは映画コレクションを分析し、シリアライザー映画の概要と統計情報を返します。

Summarize the Atlas movies collection by thrillers
I'll help you analyze the Atlas movies collection focusing
on thrillers. First, let me check what databases are
available in your connected cluster.
Ran ``list-databases``
Perfect! I can see you have the sample_mflix database which
contains the movies collection. Let me check the collections
in that database:
Ran ``list-collections``
Great! Now let me analyze the movies collection to find
thrillers and provide a summary. First, let me check the
schema to understand how genres are stored:
Ran ``collection-schema``
Perfect! I can see that genres are stored as an array of
strings. Now let me get a count of thriller movies and then
perform an aggregation to summarize them:
Ran ``count``
Now let me create a comprehensive summary of thriller movies
using aggregation:
Ran ``aggregate``
I see there are some data quality issues. Let me get better
data by filtering for movies with numeric ratings:
Ran ``aggregate``
Now let me get some more summary statistics by decade:
Ran ``aggregate``
Here's a comprehensive analysis of thriller movies in your
Atlas sample_mflix collection:
Overall Statistics
Total Thriller Movies: 2,454 films
Time Span: 1924 to 2011
Average Rating: 6.3/10 (IMDb)
Average Runtime: 105 minutes
Total IMDb Votes: 85.8 million across all thrillers
Top-Rated Thriller Movies
Drishyam (2013) - 8.9/10 - Indian thriller directed by Jeethu Joseph
Tinker Tailor Soldier Spy (1979) - 8.7/10 - British spy thriller
Rear Window (1954) - 8.6/10 - Alfred Hitchcock classic
The Silence of the Lambs (1991) - 8.6/10 - Psychological thriller
Se7en (1995) - 8.6/10 - David Fincher crime thriller
The Usual Suspects (1995) - 8.6/10 - Neo-noir mystery
Léon: The Professional (1994) - 8.6/10 - Action thriller
Psycho (1960) - 8.6/10 - Another Hitchcock masterpiece
Memento (2000) - 8.5/10 - Christopher Nolan psychological thriller
Trends by Decade
1920s-1950s: Few thrillers but high quality (avg 7.2-7.8 rating)
1960s-1970s: Growing popularity, still maintaining quality
1980s: Significant growth (200 films), quality decline begins
1990s: Peak production era (417 films), avg 6.3 rating
2000s: Highest volume (854 films), avg 6.24 rating
2010s: 730 films, lowest average rating (6.12)
The data shows that while thriller production increased
dramatically from the 1980s onward, the average quality (as
measured by IMDb ratings) has generally declined, suggesting
the genre became more commercialized with higher volume but
potentially lower artistic standards in recent decades.

次の例では、 moviesコレクションをコピーします。

Make a copy of the movies collection named movies_copy
I'll create a copy of the movies collection named
movies_copy. I'll use an aggregation pipeline with $out to
copy all documents from the movies collection to a new
movies_copy collection.
Ran ``aggregate``
Perfect! I've successfully created a copy of the movies
collection named movies_copy. Let me verify the copy was
created correctly by checking the document count:
Ran ``count``
Found 21349 documents in the collection "movies_copy"
Excellent! The movies_copy collection has been successfully
created with all 21,349 documents from the original movies
collection. The copy operation completed successfully and
you now have an identical backup of your movies collection.

次の例では、 movies_copyコレクションにドキュメントを追加します。

Add a document to the movies_copy collection
I'll add a new document to the movies_copy collection. Let
me create a sample movie document with the same structure as
the existing movies:
Ran ``insert-many``
Perfect! I've successfully added a new movie document to the
movies_copy collection. Here's what I added:
New Movie Added:
Title: "The AI Thriller"
Genres: Thriller, Sci-Fi, Drama
Year: 2024
Runtime: 118 minutes
IMDb Rating: 7.8/10 (125,000 votes)
Cast: John Smith, Sarah Johnson, Michael Chen
Director: Alex Rodriguez
Rating: PG-13
The document was inserted with ID: 684b15fb5084ddef1f265e8f
Let me verify the collection now has one additional
document:
Ran ``count``
Confirmed! The movies_copy collection now contains 21,350
documents (up from 21,349), including your new thriller
movie about AI consciousness.

次の例では、映画の購入を保存するための新しいコレクションを作成しています。

Create a new collection to store movie purchases data that
includes geospatial and timeseries fields
I'll create a new collection for storing movie purchases
data with geospatial and timeseries fields. Let me first
create the collection and then add some sample documents
with the appropriate structure.
Ran ``create-collection``
Now I'll insert sample documents that include geospatial
data (customer location, theater location) and timeseries
data (purchase timestamp, viewing timestamp):
Ran ``insert-many``
Perfect! I've created the movie_purchases collection with
sample data that includes both geospatial and timeseries
fields. Here's what the collection contains:
Collection Structure
Geospatial Fields:
customer_location: GeoJSON Point with customer's coordinates
theater_location: GeoJSON Point with theater coordinates
customer_address: Human-readable address information
Timeseries Fields:
purchase_timestamp: When the purchase was made
viewing_timestamp: When the movie was actually watched
viewing_duration_minutes: How long the customer watched
completion_percentage: Percentage of movie completed
Sample Data Added:
Purchase 1: Customer in San Francisco bought "The Shawshank Redemption" rental for $12.99
Purchase 2: Customer in New York purchased "Pulp Fiction" for $15.99
Purchase 3: Customer in Los Angeles rented "Se7en" for $9.99
Now let me create a geospatial index to optimize
location-based queries:
Ran ``create-index``
Excellent! The movie_purchases collection is now ready with:
Geospatial capabilities - 2dsphere index for location-based queries
Timeseries optimization - Index on purchase timestamps
Sample data - 3 purchase records across different US cities
This collection can now support queries like:
Finding purchases within a certain radius of a location
Analyzing purchase patterns over time
Correlating viewing behavior with geographic regions
Time-based analytics and trending

次の例では、Atlas の新しいプロジェクトと、新しいプロジェクト内に無料のクラスターを作成します。

Create a new Atlas project named myNewProject and create a
free cluster named myNewCluster in the new project, add
access list for my current IP, create a database user named
myNewUser with read and write access to the new cluster, and
return the connection string for the new cluster
I'll create a new Atlas project, free cluster, and set up
all the necessary access details for you.
Ran ``atlas-create-project``
Great! I've created a new project named "myNewProject"
in your MongoDB Atlas organization. Now let's list the
projects to get the project ID for the new project:
Ran ``atlas-list-projects``
Now I'll create a free cluster named "myNewCluster" in the
new project:
Ran ``atlas-create-free-cluster``
Now, I'll add your current IP address to the access list:
Ran ``atlas-create-accees-list``
Now let's create a database user named "myNewUser" with read
and write access:
Ran ``atlas-create-db-user``
Perfect! Everything has been set up successfully:
New Project Information:
Project Name: myNewProject
Project ID: XXX
New Cluster Information:
Cluster Name: myNewCluster
Region: US East (US_EAST_1)
Database User:
Username: myNewUser
Password: XXX
Access: Read and write to any database
Connection String:
mongodb+srv://myNewUser:XXX@myNewCluster.mongodb.net/
Your current IP address has been added to the access list,
so you should be able to connect to the cluster from your
current location. The cluster will take a few minutes to
fully provision and be ready for connections.

戻る

ツール