Docs 菜单
Docs 主页
/ /

AI集群助手

AI集群助手是嵌入在Atlas用户界面中的由AI驱动的助手。您可以在创建集群或编辑集群配置时使用它来回答有关集群配置的自然语言问题。然后, AI集群助手可以根据您的工作负载和需求推荐设置,并将这些设置直接应用您的集群。

要使用Atlas中的AI集群助手,首先确保在 Organization Settings 页面启用生成式AI功能。

要启用此组织级别设置,请执行以下操作:

1
  1. 如果尚未显示,组织从导航栏中的Organizations菜单。

  2. 在侧边栏中,单击 Organization Settings

将显示组织设置页面。

2

Enable Atlas features that use generative AI 切换设置为 On

创建集群或编辑集群配置时,您可以在Atlas用户界面中访问权限AI集群助手。要在创建集群时访问权限AI集群助手,请执行以下操作:

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 在侧边栏中,单击 Database 标题下的 Clusters

会显示集群页面。

2

如果您已有一个或多个集群,请单击 Create 以显示 Deploy your cluster 页面。

如果这是您的第一个集群,请单击 Build a Cluster 显示 Deploy your cluster 页面。

3

导航至页面底部,然后单击 Go to Advanced Configuration

页面右侧会显示AI集群助手聊天窗口。

要在编辑集群时访问权限AI集群助手,只需在 Upgrade <yourClusterName> 页面上单击 Edit additional configuration 即可。

要关闭助手,请单击聊天窗口右上角的 。要重新打开助手,请单击关闭面板不会更改您的配置,也删除该会话中的聊天记录。您可以在同一会话期间随时重新打开聊天窗口。

1

按照访问AI集群助手中的步骤操作。

2

提交提示,寻求有关集群配置的建议。您可以讨论您的工作负载、使用案例或当前的痛点,以便AI集群助手建议新配置,以最好地满足您的需求。

3

AI集群助手提供响应,讨论您的需求并建议集群配置。查看响应和建议的配置,并评估它们是否令人满意。

4

如有需要,您可以向AI集群助手提交后续提示,以获取有关建议配置的更多信息,或请求更适合您需求的新配置。

5

单击 Apply these suggestions 接受AI集群助手建议的配置。这并不能最终确定您的配置,您仍然可以进行更改。

6

您可以使用聊天窗口中AI集群助手响应下方的 或 按钮,提供有关响应和使用AI集群助手的体验的反馈。

7

满足要求后,保存集群配置。

如果要创建集群,请单击页面底部的 Create Cluster,以使用建议的配置创建集群。

如果要修改集群,请单击页面底部的 Review Changes 以查看更改摘要。然后,单击 Accept Changes 保存新配置。

这将关闭AI集群助手。

在与您聊天时, AI集群助手会根据您的下一个任务提供指向不同Atlas用户界面页面的链接。 AI集群助手可能会链接到以下Atlas用户界面页面之一:

以下场景展示了在Atlas中创建或编辑集群时使用AI集群助手的一些方法。

描述您的使用案例和需求,并要求AI集群助手建议最适合您的集群配置。

示例,如果您正在开发应用程序,您可以告诉AI集群助手应用程序的用途和预期用户数量。

I’m setting up a development cluster for a restaurant rating app with
100 users in NYC. What’s the best cluster configuration?
For a small development app with ~100 users, cost-effectiveness and
reliability are key. I recommend starting with an M10 cluster on AWS in
US_EAST_1 (N. Virginia). This tier supports your use case with enough
resources for development and light testing, while keeping costs
controlled. Avoid free (M0) since you already have one and FLEX is
unnecessary for your scale.
I'll suggest a configuration based on these requirements. Quick
questions to further optimize:
- Do you expect your dataset to grow beyond 10GB during development?
- Any other environments needed, like staging or test?
- Will more developers or services connect to this cluster soon?
Suggesting the config now.

在AI集群助手建议配置后,您可以接受并保存它,也可以继续讨论您的需求,直到获得满意的配置。

您还可以告诉AI集群助手您预计需要支持的数据大小以及您的项目所在的位置。

I’m looking to migrate an existing project to Atlas. We currently
have 100GB of data that we need to move over. The project is currently
deployed in Europe and we want to maintain that. How should I configure
my cluster?
For migrating a 100GB project to Atlas in Europe, I recommend the following:
- Use AWS as your cloud provider (most commonly used, but let me know if
you prefer GCP or Azure).
- Select the region EU_WEST_1 (Ireland) to host your data in Europe.
- Choose at least an M40 instance (this tier is recommended for
migrating and running production workloads with 100GB+ data, ensuring
strong performance during data load and normal operations).
- Set storage to 150GB (100GB data + 30% headroom).
- Default disk IOPS for M40 will provide ample performance for both
migration and ongoing workload.
Let’s proceed with this setup.
A few quick clarifications:
- Is this a production environment with performance/uptime requirements?
- Do you expect rapid growth in data or traffic soon?
- Any preference for AWS, GCP, or Azure within Europe, or should we
proceed with AWS?
I’ll configure the cluster now with these optimized settings.

您可以再次接受并保存建议的配置,或继续努力使用AI集群助手制定更能满足您需求的配置。

描述使用案例和需求的变化,并让AI集群助手建议如何最好地修改集群配置。

示例,您可以与AI集群助手讨论预算限制。

My cluster costs more than expected. Is there a setup that keeps
us under $500/mo?
To keep monthly costs under $500, I recommend switching to an M30 tier.
This provides reliable performance for standard production workloads at
around $394/month on AWS, plus some buffer for backups and storage.
Here’s how I’ll configure it:
- Instance size: M30 (entry-level dedicated, good for most production
apps)
- Region: N. Virginia (US_EAST_1) (stays consistent with your existing
clusters)
- Disk size: 40GB (default for M30, suitable for moderate workloads)
- No additional IOPS or premium storage (keeps costs down)
- No analytics/search node or advanced add-ons
Let’s proceed with this cost-effective configuration.
Before finalizing, can you clarify:
- Is this cluster for production, staging, or development?
- What’s your estimated data volume (just rough amount of GB needed)?
- Any specific performance requirements (high writes, reads, etc.)?
I’ll now suggest the configuration for you.

AI集群助手会建议新配置。

您还可以与AI集群助手讨论增加的工作负载。

Suggest a cluster setup as I'm expanding to India and expect 20,000
new users and the associated data.
Since you're expanding to India with 20,000 expected users, you’ll need
a production-grade cluster deployed in an appropriate Indian region for
low latency. I recommend AWS as the cloud provider (unless you have a
preference for GCP or Azure), using the AP_SOUTH_1 region (Mumbai).
For your user base and workload size, an M30 dedicated tier is a strong
fit—it’s ideal for mid-sized production apps. This setup will handle
moderate to high traffic and provides headroom as your user base grows.
I'll set:
- Cloud Provider: AWS
- Region: AP_SOUTH_1 (Mumbai, India)
- Instance Size: M30 (production-ready with sufficient resources)
- Disk Size: Default (40GB, upgrade later if data grows quickly)
To refine this setup:
- What type of workload will the cluster handle (e.g., read-heavy,
write-heavy, analytics)?
- Any data volume estimate (GB/TB) for the first year?
- Any specific cost constraints?
Applying this recommendation now.

AI集群助手会建议一种可以满足您的扩展需求的配置。

  • AI Cluster 助手的数据使用情况

后退

创建集群

在此页面上