AI集群助手是嵌入在Atlas用户界面中的由AI驱动的助手。您可以在创建集群或编辑集群配置时使用它来回答有关集群配置的自然语言问题。然后, AI集群助手可以根据您的工作负载和需求推荐设置,并将这些设置直接应用您的集群。
启用 AI 功能
要使用Atlas中的AI集群助手,首先确保在 Organization Settings 页面启用生成式AI功能。
要启用此组织级别设置,请执行以下操作:
在Atlas中,转到Organization Settings 页面。
如果尚未显示,组织从导航栏中的Organizations菜单。
在侧边栏中,单击 Organization Settings。
将显示组织设置页面。
访问AI集群助手
创建集群或编辑集群配置时,您可以在Atlas用户界面中访问权限AI集群助手。要在创建集群时访问权限AI集群助手,请执行以下操作:
在Atlas中,转到项目的Clusters 页面。
如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。
如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。
在侧边栏中,单击 Database 标题下的 Clusters。
会显示集群页面。
要在编辑集群时访问权限AI集群助手,只需在 Upgrade <yourClusterName> 页面上单击 Edit additional configuration 即可。
要关闭助手,请单击聊天窗口右上角的 。要重新打开助手,请单击关闭面板不会更改您的配置,也删除该会话中的聊天记录。您可以在同一会话期间随时重新打开聊天窗口。
示例流程
在与您聊天时, AI集群助手会根据您的下一个任务提供指向不同Atlas用户界面页面的链接。 AI集群助手可能会链接到以下Atlas用户界面页面之一:
示例
以下场景展示了在Atlas中创建或编辑集群时使用AI集群助手的一些方法。
使用AI集群助手创建集群
描述您的使用案例和需求,并要求AI集群助手建议最适合您的集群配置。
示例,如果您正在开发应用程序,您可以告诉AI集群助手应用程序的用途和预期用户数量。
I’m setting up a development cluster for a restaurant rating app with 100 users in NYC. What’s the best cluster configuration?
For a small development app with ~100 users, cost-effectiveness and reliability are key. I recommend starting with an M10 cluster on AWS in US_EAST_1 (N. Virginia). This tier supports your use case with enough resources for development and light testing, while keeping costs controlled. Avoid free (M0) since you already have one and FLEX is unnecessary for your scale. I'll suggest a configuration based on these requirements. Quick questions to further optimize: - Do you expect your dataset to grow beyond 10GB during development? - Any other environments needed, like staging or test? - Will more developers or services connect to this cluster soon? Suggesting the config now.
在AI集群助手建议配置后,您可以接受并保存它,也可以继续讨论您的需求,直到获得满意的配置。
您还可以告诉AI集群助手您预计需要支持的数据大小以及您的项目所在的位置。
I’m looking to migrate an existing project to Atlas. We currently have 100GB of data that we need to move over. The project is currently deployed in Europe and we want to maintain that. How should I configure my cluster?
For migrating a 100GB project to Atlas in Europe, I recommend the following: - Use AWS as your cloud provider (most commonly used, but let me know if you prefer GCP or Azure). - Select the region EU_WEST_1 (Ireland) to host your data in Europe. - Choose at least an M40 instance (this tier is recommended for migrating and running production workloads with 100GB+ data, ensuring strong performance during data load and normal operations). - Set storage to 150GB (100GB data + 30% headroom). - Default disk IOPS for M40 will provide ample performance for both migration and ongoing workload. Let’s proceed with this setup. A few quick clarifications: - Is this a production environment with performance/uptime requirements? - Do you expect rapid growth in data or traffic soon? - Any preference for AWS, GCP, or Azure within Europe, or should we proceed with AWS? I’ll configure the cluster now with these optimized settings.
您可以再次接受并保存建议的配置,或继续努力使用AI集群助手制定更能满足您需求的配置。
使用AI集群助手修改集群
描述使用案例和需求的变化,并让AI集群助手建议如何最好地修改集群配置。
示例,您可以与AI集群助手讨论预算限制。
My cluster costs more than expected. Is there a setup that keeps us under $500/mo?
To keep monthly costs under $500, I recommend switching to an M30 tier. This provides reliable performance for standard production workloads at around $394/month on AWS, plus some buffer for backups and storage. Here’s how I’ll configure it: - Instance size: M30 (entry-level dedicated, good for most production apps) - Region: N. Virginia (US_EAST_1) (stays consistent with your existing clusters) - Disk size: 40GB (default for M30, suitable for moderate workloads) - No additional IOPS or premium storage (keeps costs down) - No analytics/search node or advanced add-ons Let’s proceed with this cost-effective configuration. Before finalizing, can you clarify: - Is this cluster for production, staging, or development? - What’s your estimated data volume (just rough amount of GB needed)? - Any specific performance requirements (high writes, reads, etc.)? I’ll now suggest the configuration for you.
AI集群助手会建议新配置。
您还可以与AI集群助手讨论增加的工作负载。
Suggest a cluster setup as I'm expanding to India and expect 20,000 new users and the associated data.
Since you're expanding to India with 20,000 expected users, you’ll need a production-grade cluster deployed in an appropriate Indian region for low latency. I recommend AWS as the cloud provider (unless you have a preference for GCP or Azure), using the AP_SOUTH_1 region (Mumbai). For your user base and workload size, an M30 dedicated tier is a strong fit—it’s ideal for mid-sized production apps. This setup will handle moderate to high traffic and provides headroom as your user base grows. I'll set: - Cloud Provider: AWS - Region: AP_SOUTH_1 (Mumbai, India) - Instance Size: M30 (production-ready with sufficient resources) - Disk Size: Default (40GB, upgrade later if data grows quickly) To refine this setup: - What type of workload will the cluster handle (e.g., read-heavy, write-heavy, analytics)? - Any data volume estimate (GB/TB) for the first year? - Any specific cost constraints? Applying this recommendation now.
AI集群助手会建议一种可以满足您的扩展需求的配置。