What is a Non-Relational Database?

Overview


Most databases can be categorized as either:

  • Relational
  • Non-relational

The main difference between these is how they store their information.

A non-relational database stores data in a non-tabular form, and tends to be more flexible than the traditional, SQL-based, relational database structures. It does not follow the relational model provided by traditional relational database management systems.

To explain non-relational databases in more detail, let’s first look at what a traditional, relational database is.



Relational database

A relational database typically stores information in tables containing specific pieces and types of data. For example, a shop could store details of their customers’ names and addresses in one table and details of their orders in another. This form of data storage is often called structured data.

Relational databases use Structured Query Language (SQL). In relational database design, the database usually contains tables consisting of columns and rows. When new data is added, new records are inserted into existing tables or new tables are added. Relationships can then be made between two or more tables.

Relational databases work best when the data they contain doesn’t change very often, and when accuracy is crucial. Relational databases are, for instance, often found in financial applications.




Non-relational database

Non-relational databases (often called NoSQL databases) are different from traditional relational databases in that they store their data in a non-tabular form. Instead, non-relational databases might be based on data structures like documents. A document can be highly detailed while containing a range of different types of information in different formats. This ability to digest and organize various types of information side-by-side makes non-relational databases much more flexible than relational databases.

Non-relational databases are often used when large quantities of complex and diverse data need to be organized. For example, a large store might have a database in which each customer has their own document containing all of their information, from name and address to order history and credit card information. Despite their differing formats, each of these pieces of information can be stored in the same document.

Non-relational databases often perform faster because a query doesn’t have to view several tables in order to deliver an answer, as relational datasets often do. Non-relational databases are therefore ideal for storing data that may be changed frequently or for applications that handle many different kinds of data. They can support rapidly developing applications requiring a dynamic database able to change quickly and to accommodate large amounts of complex, unstructured data.




The benefits of a non-relational database

Today’s applications collect and store increasingly vast quantities of ever-more complex customer and user data. The benefits of this data to businesses, of course, lies in its potential for analysis. Using a non-relational database can unlock patterns and value even within masses of variegated data.

There are several advantages to using non-relational databases, including:

  • Massive dataset organization
    In the age of Big Data, non-relational databases can not only store massive quantities of information, but they can also query these datasets with ease. Scale and speed are crucial advantages of non-relational databases.
  • Flexible database expansion
    Data is not static. As more information is collected, a non-relational database can absorb these new data points, enriching the existing database with new levels of granular value even if they don’t fit the data types of previously existing information.

  • Multiple data structures
    The data now collected from users takes on a myriad of forms, from numbers and strings, to photo and video content, to message histories. A database needs the ability to store these various information formats, understand relationships between them, and perform detailed queries. No matter what format your information is in, non-relational databases can collate different information types together in the same document.

  • Built for the cloud
    A non-relational database can be massive. And as they can in some cases grow exponentially, they need a hosting environment that can grow and expand with. The cloud’s inherent scalability makes it an ideal home for non-relational databases.




Non-relational databases and application development

Applications must be able to query data efficiently and deliver results almost instantly. Non-relational databases are a natural choice for this kind of environment. They offer both security and agility, allowing for rapid development of applications in an agile environment. Easier and less complex to manage than relational databases, they can also yield lower data management costs while providing superior performance and speed.

Naturals for agile development, non-relational databases can accommodate the complexity of data inputs more efficiently than structured databases. In an age of increasing data complexity, non-relational databases provide the flexibility in database design that has become increasingly indispensable. Especially when paired with the cloud, non-relational databases lift the limits on your data collection, organization, and analysis, allowing you to get the most out of your data.


Related Content:

Try MongoDB Atlas Free!

Try MongoDB, the non-relational database with over 60 million downloads. Start on our free tier, no credit card required.