Casos de uso: Gen AI, personalización
Industrias: Telecomunicaciones, Medios de Comunicación
Productos y herramientas: MongoDB Atlas, Búsqueda vectorial deMongoDB Atlas, ControladorMongoDB PyMongo
Resumen de la solución
En el cambiante panorama mediático actual, la gran cantidad de contenido digital dificulta captar la atención de la audiencia. Al mismo tiempo, el tráfico de referencia proveniente de las redes sociales está disminuyendo, lo que ejerce una presión adicional sobre los medios tradicionales para impulsar la interacción. Como resultado, los editores buscan maneras de estabilizar su base de usuarios y mejorar la interacción con el contenido.
Para superar estos desafíos, los editores necesitan usar los datos eficazmente para crear experiencias más atractivas y personalizadas para sus usuarios. Con MongoDB Atlas y Atlas Vector Search, puede crear una plataforma multimedia basada en IA que transforma la entrega de contenido a los usuarios de plataformas multimedia y editoriales a gran escala. Al analizar las interacciones y los patrones de consumo, esta solución comprende qué contenido impacta a los usuarios y predice con qué es probable que interactúen en el futuro. Esta información permite a los editores construir una experiencia de contenido personalizada.
Arquitecturas de Referencia
La siguiente arquitectura muestra cómo se puede crear una solución de medios impulsada por IA con MongoDB que incorpora servicios de personalización avanzados, como:
Descubrimiento y sugerencias de contenido
Resumen y reformateo de contenidos
Extracción de palabras clave
Automatización de insights y expedientes
Figura 1. Arquitectura de medios basada en IA con Atlas Vector Search
Las siguientes secciones describen estos servicios con más detalle.
Descubrimiento y sugerencias de contenido
Esta solución sugiere contenido basado en las preferencias e interacciones previas de los usuarios mediante el uso de datos de usuario, análisis de comportamiento y vectorización de elementos multimedia. Esto mejora la interacción del usuario y aumenta la probabilidad de convertir usuarios gratuitos en suscriptores de pago. La búsqueda vectorial de MongoDB... BúsquedaskNN, optimizando la correspondencia de contenido mediante la incrustación de vectores directamente en documentos MongoDB. Esto significa que no es necesario administrar múltiples aplicaciones ni transferir datos entre diferentes sistemas de bases de datos, lo que simplifica la arquitectura. Además, la escalabilidad y resiliencia de MongoDB permiten a las organizaciones escalar sus operaciones vertical u horizontalmente. También se pueden escalar los nodos de búsqueda independientemente de los nodos de base de datos operativos para adaptarse a la situación de carga específica.
Resumen y reformateo de contenido
Los usuarios tienen diversos hábitos de consumo. Esta solución ofrece resúmenes concisos y adapta el formato del contenido según las preferencias del usuario y las especificaciones del dispositivo.
Extracción de palabras clave
En los flujos de trabajo de publicación tradicionales, la selección de palabras clave requiere que los creadores de contenido identifiquen e incorporen meticulosamente las palabras clave relevantes. Este proceso puede ser lento y propenso a errores humanos, ya que se pueden pasar por alto palabras clave importantes, lo que puede reducir la visibilidad y la interacción del contenido.
Con la ayuda del LLM subyacente, esta solución extrae información esencial mediante la extracción de palabras clave, lo que permite a los usuarios comprender las dimensiones clave de las noticias y mejora la capacidad de búsqueda del contenido dentro de la plataforma. Las palabras clave influyen significativamente en el rendimiento SEO del contenido digital.
Automatización de información y expedientes
Esta solución genera automáticamente información y dossiers completos a partir de múltiples artículos, lo cual resulta útil para quienes desean profundizar en temas o eventos específicos. Esta función utiliza uno o más LLM para generar resultados en lenguaje natural, derivados de múltiples artículos fuente. Puede integrar cualquier modelo de lenguaje líder que se ajuste a sus necesidades. Así es como funciona este proceso:
Integración con múltiples fuentes: El sistema utiliza Atlas Vector Search para extraer contenido de diversos artículos y fuentes de datos. Este contenido se compila en dosieres que ofrecen a los usuarios una exploración detallada y contextualizada de los temas, y se seleccionan para ofrecer una perspectiva narrativa o analítica que trasciende el contenido original.
Salida personalizable: Puede personalizar la salida del sistema configurando parámetros según las preferencias de su audiencia o los requisitos específicos de su proyecto. Esto incluye ajustar el nivel de detalle, la cantidad de términos técnicos y la inclusión de elementos multimedia.
Puedes reutilizar los conceptos básicos de esta solución en otras industrias como la venta minorista, donde presentar los productos adecuados a los usuarios adecuados es fundamental para mantener altas las ventas.
Construir la solución
Puede ver la demostración de la solución en https://ist.media, o replicarlo usando el README de este repositorio de GitHub.
Figura 2. Interfaz de la página de inicio de la plataforma de medios
En el modelo de datos subyacente, un artículo de noticias representativo tiene la siguiente estructura:
Figura 3. Modelo de datos para un artículo de noticias.
Puedes usar Voyage AI para generar tus incrustaciones. Para realizar una búsqueda vectorial, crea un índice vectorial en MongoDB Atlas con la siguiente configuración:
Figura 4. Índice vectorial del modelo de incrustación.
Aprendizajes clave
Cree aplicaciones impulsadas por IA: con MongoDB Atlas, puede crear una solución multimedia impulsada por IA que ofrece contenido personalizado a sus usuarios y automatiza procesos de backend, como la automatización de palabras clave.
Almacene diversos tipos de datos: con el modelo de documento flexible de MongoDB, puede almacenar una amplia gama de datos multimedia, incluidos datos de usuario, artículos de noticias e incrustaciones, lo que simplifica el desarrollo de aplicaciones impulsadas por IA.
Personalice las experiencias de los usuarios: con MongoDB Atlas Vector Search, puede crear un recorrido de contenido personalizado, basado en preferencias individuales e interacciones pasadas, que mejora la participación del usuario.
Autores
Benjamin Lorenz, MongoDB
Obtén más información
Para aprender a crear búsquedas más inteligentes, visita la guía de inicio rápido de búsqueda vectorial de Atlas.