Note
Aggregation Pipeline as Alternative to Map-Reduce
Starting in MongoDB 5.0, map-reduce is deprecated:
Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.
You can rewrite map-reduce operations using aggregation pipeline stages, such as
$group,$merge, and others.For map-reduce operations that require custom functionality, you can use the
$accumulatorand$functionaggregation operators. You can use those operators to define custom aggregation expressions in JavaScript.
For examples of aggregation pipeline alternatives to map-reduce, see:
db.collection.mapReduce(map,reduce, { <options> })Important
mongosh Method
This page documents a
mongoshmethod. This is not the documentation for database commands or language-specific drivers, such as Node.js.For the database command, see the
mapReducecommand.For MongoDB API drivers, refer to the language-specific MongoDB driver documentation.
Note
Views do not support map-reduce operations.
Compatibility
This method is available in deployments hosted in the following environments:
MongoDB Atlas: The fully managed service for MongoDB deployments in the cloud
Important
This command is not supported in M0, M2, and M5 clusters. For more information, see Unsupported Commands.
MongoDB Enterprise: The subscription-based, self-managed version of MongoDB
MongoDB Community: The source-available, free-to-use, and self-managed version of MongoDB
Syntax
Note
MongoDB ignores the verbose option.
Starting in version 4.2, MongoDB deprecates:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
db.collection.mapReduce() has the following syntax:
db.collection.mapReduce( <map>, <reduce>, { out: <collection>, query: <document>, sort: <document>, limit: <number>, finalize: <function>, scope: <document>, jsMode: <boolean>, verbose: <boolean>, bypassDocumentValidation: <boolean> } )
db.collection.mapReduce() takes the following parameters:
Parameter | Type | Description |
|---|---|---|
| JavaScript or String | A JavaScript function that associates or "maps" a See Requirements for the map Function for more information. |
| JavaScript or String | A JavaScript function that "reduces" to a single object all the
See Requirements for the reduce Function for more information. |
| document | A document that specifies additional parameters to
|
The following table describes additional arguments that
db.collection.mapReduce() can accept.
Field | Type | Description | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| string or document | Specifies the location of the result of the map-reduce operation.
You can output to a collection, output to a collection with an
action, or output inline. You may output to a collection when
performing map-reduce operations on the primary members of the set;
on secondary members you may only use the See out Options for more information. | ||||||||||
| document | Specifies the selection criteria using query operators for determining the documents input to the
| ||||||||||
| document | Sorts the input documents. This option is useful for optimization. For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. The sort key must be in an existing index for this collection. | ||||||||||
| number | Specifies a maximum number of documents for the input into the
| ||||||||||
| Javascript or String | Optional. A JavaScript function that modifies the output after
the See Requirements for the finalize Function for more information. | ||||||||||
| document | Specifies global variables that are accessible in the | ||||||||||
| boolean | Specifies whether to convert intermediate data into BSON
format between the execution of the Defaults to If
If
| ||||||||||
| boolean | Specifies whether to include the Defaults to This option is ignored. The result
information always excludes the | ||||||||||
| document | Optional. Specifies the collation to use for the operation. Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks. The collation option has the following syntax: When specifying collation, the If the collation is unspecified but the collection has a
default collation (see If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons. You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort. New in version 3.4. | ||||||||||
| boolean | Optional. Enables New in version 3.2. |
Note
map-reduce operations and $where
operator expressions cannot access certain global functions or
properties, such as db, that are available in
mongosh.
The following JavaScript functions and properties are available to
map-reduce operations and $where
operator expressions:
Available Properties | Available Functions | |
|---|---|---|
argsMaxKeyMinKey | assert()BinData()DBPointer()DBRef()doassert()emit()gc()HexData()hex_md5()isNumber()isObject()ISODate()isString() | Map()MD5()NumberInt()NumberLong()ObjectId()print()printjson()printjsononeline()sleep()Timestamp()tojson()tojsononeline()tojsonObject()UUID()version() |
Requirements for the map Function
The map function is responsible for transforming each input document into
zero or more documents. It can access the variables defined in the scope
parameter, and has the following prototype:
function() { ... emit(key, value); }
The map function has the following requirements:
In the
mapfunction, reference the current document asthiswithin the function.The
mapfunction should not access the database for any reason.The
mapfunction should be pure, or have no impact outside of the function (i.e. side effects.)The
mapfunction may optionally callemit(key,value)any number of times to create an output document associatingkeywithvalue.
The following map function will call emit(key,value) either
0 or 1 times depending on the value of the input document's
status field:
function() { if (this.status == 'A') emit(this.cust_id, 1); }
The following map function may call emit(key,value)
multiple times depending on the number of elements in the input
document's items field:
function() { this.items.forEach(function(item){ emit(item.sku, 1); }); }
Requirements for the reduce Function
The reduce function has the following prototype:
function(key, values) { ... return result; }
The reduce function exhibits the following behaviors:
The
reducefunction should not access the database, even to perform read operations.The
reducefunction should not affect the outside system.MongoDB can invoke the
reducefunction more than once for the same key. In this case, the previous output from thereducefunction for that key will become one of the input values to the nextreducefunction invocation for that key.The
reducefunction can access the variables defined in thescopeparameter.The inputs to
reducemust not be larger than half of MongoDB's maximum BSON document size. This requirement may be violated when large documents are returned and then joined together in subsequentreducesteps.
Because it is possible to invoke the reduce function
more than once for the same key, the following
properties need to be true:
the type of the return object must be identical to the type of the
valueemitted by themapfunction.the
reducefunction must be associative. The following statement must be true:reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] ) the
reducefunction must be idempotent. Ensure that the following statement is true:reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray ) the
reducefunction should be commutative: that is, the order of the elements in thevaluesArrayshould not affect the output of thereducefunction, so that the following statement is true:reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )
out Options
You can specify the following options for the out parameter:
Output to a Collection
This option outputs to a new collection, and is not available on secondary members of replica sets.
out: <collectionName>
Output to a Collection with an Action
Note
Starting in version 4.2, MongoDB deprecates:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
This option is only available when passing a collection that
already exists to out. It is not available
on secondary members of replica sets.
out: { <action>: <collectionName> [, db: <dbName>] [, sharded: <boolean> ] }
When you output to a collection with an action, the out has the
following parameters:
<action>: Specify one of the following actions:replaceReplace the contents of the
<collectionName>if the collection with the<collectionName>exists.mergeMerge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.
reduceMerge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the
reducefunction to both the new and the existing documents and overwrite the existing document with the result.
db:Optional. The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.
Output Inline
Perform the map-reduce operation in memory and return the result. This
option is the only available option for out on secondary members of
replica sets.
out: { inline: 1 }
The result must fit within the maximum size of a BSON document.
Requirements for the finalize Function
The finalize function has the following prototype:
function(key, reducedValue) { ... return modifiedObject; }
The finalize function receives as its arguments a key
value and the reducedValue from the reduce function. Be
aware that:
The
finalizefunction should not access the database for any reason.The
finalizefunction should be pure, or have no impact outside of the function (i.e. side effects.)The
finalizefunction can access the variables defined in thescopeparameter.
Map-Reduce Examples
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Create a sample collection orders with these documents:
db.orders.insertMany([ { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" }, { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" }, { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" }, { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"}, { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" } ])
Return the Total Price Per Customer
Perform the map-reduce operation on the orders collection to group
by the cust_id, and calculate the sum of the price for each
cust_id:
Define the map function to process each input document:
In the function,
thisrefers to the document that the map-reduce operation is processing.The function maps the
priceto thecust_idfor each document and emits thecust_idandprice.
var mapFunction1 = function() { emit(this.cust_id, this.price); }; Define the corresponding reduce function with two arguments
keyCustIdandvaluesPrices:The
valuesPricesis an array whose elements are thepricevalues emitted by the map function and grouped bykeyCustId.The function reduces the
valuesPricearray to the sum of its elements.
var reduceFunction1 = function(keyCustId, valuesPrices) { return Array.sum(valuesPrices); }; Perform map-reduce on all documents in the
orderscollection using themapFunction1map function and thereduceFunction1reduce function:db.orders.mapReduce( mapFunction1, reduceFunction1, { out: "map_reduce_example" } ) This operation outputs the results to a collection named
map_reduce_example. If themap_reduce_examplecollection already exists, the operation will replace the contents with the results of this map-reduce operation.Query the
map_reduce_examplecollection to verify the results:db.map_reduce_example.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate([ { $group: { _id: "$cust_id", value: { $sum: "$price" } } }, { $out: "agg_alternative_1" } ])
The
$groupstage groups by thecust_idand calculates thevaluefield (See also$sum). Thevaluefield contains the totalpricefor eachcust_id.The stage output the following documents to the next stage:
{ "_id" : "Don Quis", "value" : 155 } { "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Busby Bee", "value" : 125 } Then, the
$outwrites the output to the collectionagg_alternative_1. Alternatively, you could use$mergeinstead of$out.Query the
agg_alternative_1collection to verify the results:db.agg_alternative_1.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Tip
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Calculate Order and Total Quantity with Average Quantity Per Item
In the following example, you will see a map-reduce operation on the
orders collection for all documents that have an ord_date value
greater than or equal to 2020-03-01.
The operation in the example:
Groups by the
item.skufield, and calculates the number of orders and the total quantity ordered for eachsku.Calculates the average quantity per order for each
skuvalue and merges the results into the output collection.
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.
Example steps:
Define the map function to process each input document:
In the function,
thisrefers to the document that the map-reduce operation is processing.For each item, the function associates the
skuwith a new objectvaluethat contains thecountof1and the itemqtyfor the order and emits thesku(stored in thekey) and thevalue.
var mapFunction2 = function() { for (var idx = 0; idx < this.items.length; idx++) { var key = this.items[idx].sku; var value = { count: 1, qty: this.items[idx].qty }; emit(key, value); } }; Define the corresponding reduce function with two arguments
keySKUandcountObjVals:countObjValsis an array whose elements are the objects mapped to the groupedkeySKUvalues passed by map function to the reducer function.The function reduces the
countObjValsarray to a single objectreducedValuethat contains thecountand theqtyfields.In
reducedVal, thecountfield contains the sum of thecountfields from the individual array elements, and theqtyfield contains the sum of theqtyfields from the individual array elements.
var reduceFunction2 = function(keySKU, countObjVals) { reducedVal = { count: 0, qty: 0 }; for (var idx = 0; idx < countObjVals.length; idx++) { reducedVal.count += countObjVals[idx].count; reducedVal.qty += countObjVals[idx].qty; } return reducedVal; }; Define a finalize function with two arguments
keyandreducedVal. The function modifies thereducedValobject to add a computed field namedavgand returns the modified object:var finalizeFunction2 = function (key, reducedVal) { reducedVal.avg = reducedVal.qty/reducedVal.count; return reducedVal; }; Perform the map-reduce operation on the
orderscollection using themapFunction2,reduceFunction2, andfinalizeFunction2functions:db.orders.mapReduce( mapFunction2, reduceFunction2, { out: { merge: "map_reduce_example2" }, query: { ord_date: { $gte: new Date("2020-03-01") } }, finalize: finalizeFunction2 } ); This operation uses the
queryfield to select only those documents withord_dategreater than or equal tonew Date("2020-03-01"). Then it outputs the results to a collectionmap_reduce_example2.If the
map_reduce_example2collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
map_reduce_example2collection to verify the results:db.map_reduce_example2.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate( [ { $match: { ord_date: { $gte: new Date("2020-03-01") } } }, { $unwind: "$items" }, { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } }, { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } }, { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } } ] )
The
$matchstage selects only those documents withord_dategreater than or equal tonew Date("2020-03-01").The
$unwindstage breaks down the document by theitemsarray field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$groupstage groups by theitems.sku, calculating for each sku:- The
qtyfield. Theqtyfield contains the - total
qtyordered per eachitems.sku(See$sum).
- The
- The
orders_idsarray. Theorders_idsfield contains an - array of distinct order
_id's for theitems.sku(See$addToSet).
- The
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$projectstage reshapes the output document to mirror the map-reduce's output to have two fields_idandvalue. The$projectsets:The
$unwindstage breaks down the document by theitemsarray field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$groupstage groups by theitems.sku, calculating for each sku:The
qtyfield. Theqtyfield contains the totalqtyordered per eachitems.skuusing$sum.The
orders_idsarray. Theorders_idsfield contains an array of distinct order_id's for theitems.skuusing$addToSet.
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$projectstage reshapes the output document to mirror the map-reduce's output to have two fields_idandvalue. The$projectsets:the
value.countto the size of theorders_idsarray using$size.the
value.qtyto theqtyfield of input document.the
value.avgto the average number of qty per order using$divideand$size.
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } Finally, the
$mergewrites the output to the collectionagg_alternative_3. If an existing document has the same key_idas the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
agg_alternative_3collection to verify the results:db.agg_alternative_3.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Output
The output of the db.collection.mapReduce() method is
identical to that of the mapReduce command. See the
Output section of the mapReduce
command for information on the db.collection.mapReduce()
output.
Restrictions
db.collection.mapReduce() no longer supports
afterClusterTime. As such,
db.collection.mapReduce() cannot be associatd with
causally consistent sessions.