Using MongoDB for Materials Discovery

Using MongoDB for Materials Discovery

Michael Kocher

December 09, 2011

Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, we have computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The Materials Project is making these materials and their properties available to scientists around the world through a sophisticated web interface. MongoDB is at the core of the Materials Project architecture. It is used to schedule and track quantum mechanical calculations of materials properties on supercomputers, to store and search the results of these computations, and to perform advanced analytics on the computed materials properties.

Try MongoDB Atlas,
our new database as a service.

Now available on AWS, Azure, and GCP.