Docs Menu
Docs Home
/
MongoDB Manual
/ / /

$regexFind (aggregation)

On this page

  • Definition
  • Syntax
  • Behavior
  • Examples
$regexFind

Provides regular expression (regex) pattern matching capability in aggregation expressions. If a match is found, returns a document that contains information on the first match. If a match is not found, returns null.

MongoDB uses Perl compatible regular expressions (i.e. "PCRE" ) version 8.41 with UTF-8 support.

The $regexFind operator has the following syntax:

{ $regexFind: { input: <expression> , regex: <expression>, options: <expression> } }
Field
Description

The string on which you wish to apply the regex pattern. Can be a string or any valid expression that resolves to a string.

The regex pattern to apply. Can be any valid expression that resolves to either a string or regex pattern /<pattern>/. When using the regex /<pattern>/, you can also specify the regex options i and m (but not the s or x options):

  • "pattern"

  • /<pattern>/

  • /<pattern>/<options>

Alternatively, you can also specify the regex options with the options field. To specify the s or x options, you must use the options field.

You cannot specify options in both the regex and the options field.

Optional. The following <options> are available for use with regular expression.

Note

You cannot specify options in both the regex and the options field.

Option
Description
i
Case insensitivity to match both upper and lower cases. You can specify the option in the options field or as part of the regex field.
m

For patterns that include anchors (i.e. ^ for the start, $ for the end), match at the beginning or end of each line for strings with multiline values. Without this option, these anchors match at beginning or end of the string.

If the pattern contains no anchors or if the string value has no newline characters (e.g. \n), the m option has no effect.

x

"Extended" capability to ignore all white space characters in the pattern unless escaped or included in a character class.

Additionally, it ignores characters in-between and including an un-escaped hash/pound (#) character and the next new line, so that you may include comments in complicated patterns. This only applies to data characters; white space characters may never appear within special character sequences in a pattern.

The x option does not affect the handling of the VT character (i.e. code 11).

You can specify the option only in the options field.

s

Allows the dot character (i.e. .) to match all characters including newline characters.

You can specify the option only in the options field.

If the operator does not find a match, the result of the operator is a null.

If the operator finds a match, the result of the operator is a document that contains:

{ "match" : <string>, "idx" : <num>, "captures" : <array of strings> }

Tip

See also:

$regexFind ignores the collation specified for the collection, db.collection.aggregate(), and the index, if used.

For example, the create a sample collection with collation strength 1 (i.e. compare base character only and ignore other differences such as case and diacritics):

db.createCollection( "myColl", { collation: { locale: "fr", strength: 1 } } )

Insert the following documents:

db.myColl.insertMany([
{ _id: 1, category: "café" },
{ _id: 2, category: "cafe" },
{ _id: 3, category: "cafE" }
])

Using the collection's collation, the following operation performs a case-insensitive and diacritic-insensitive match:

db.myColl.aggregate( [ { $match: { category: "cafe" } } ] )

The operation returns the following 3 documents:

{ "_id" : 1, "category" : "café" }
{ "_id" : 2, "category" : "cafe" }
{ "_id" : 3, "category" : "cafE" }

However, the aggregation expression $regexFind ignores collation; that is, the following regular expression pattern matching examples are case-sensitive and diacritic sensitive:

db.myColl.aggregate( [ { $addFields: { resultObject: { $regexFind: { input: "$category", regex: /cafe/ } } } } ] )
db.myColl.aggregate(
[ { $addFields: { resultObject: { $regexFind: { input: "$category", regex: /cafe/ } } } } ],
{ collation: { locale: "fr", strength: 1 } } // Ignored in the $regexFind
)

Both operations return the following:

{ "_id" : 1, "category" : "café", "resultObject" : null }
{ "_id" : 2, "category" : "cafe", "resultObject" : { "match" : "cafe", "idx" : 0, "captures" : [ ] } }
{ "_id" : 3, "category" : "cafE", "resultObject" : null }

To perform a case-insensitive regex pattern matching, use the i Option instead. See i Option for an example.

If your regex pattern contains capture groups and the pattern finds a match in the input, the captures array in the results corresponds to the groups captured by the matching string. Capture groups are specified with unescaped parentheses () in the regex pattern. The length of the captures array equals the number of capture groups in the pattern and the order of the array matches the order in which the capture groups appear.

Create a sample collection named contacts with the following documents:

db.contacts.insertMany([
{ "_id": 1, "fname": "Carol", "lname": "Smith", "phone": "718-555-0113" },
{ "_id": 2, "fname": "Daryl", "lname": "Doe", "phone": "212-555-8832" },
{ "_id": 3, "fname": "Polly", "lname": "Andrews", "phone": "208-555-1932" },
{ "_id": 4, "fname": "Colleen", "lname": "Duncan", "phone": "775-555-0187" },
{ "_id": 5, "fname": "Luna", "lname": "Clarke", "phone": "917-555-4414" }
])

The following pipeline applies the regex pattern /(C(ar)*)ol/ to the fname field:

db.contacts.aggregate([
{
$project: {
returnObject: {
$regexFind: { input: "$fname", regex: /(C(ar)*)ol/ }
}
}
}
])

The regex pattern finds a match with fname values Carol and Colleen:

{ "_id" : 1, "returnObject" : { "match" : "Carol", "idx" : 0, "captures" : [ "Car", "ar" ] } }
{ "_id" : 2, "returnObject" : null }
{ "_id" : 3, "returnObject" : null }
{ "_id" : 4, "returnObject" : { "match" : "Col", "idx" : 0, "captures" : [ "C", null ] } }
{ "_id" : 5, "returnObject" : null }

The pattern contains the capture group (C(ar)*) which contains the nested group (ar). The elements in the captures array correspond to the two capture groups. If a matching document is not captured by a group (e.g. Colleen and the group (ar)), $regexFind replaces the group with a null placeholder.

As shown in the previous example, the captures array contains an element for each capture group (using null for non-captures). Consider the following example which searches for phone numbers with New York City area codes by applying a logical or of capture groups to the phone field. Each group represents a New York City area code:

db.contacts.aggregate([
{
$project: {
nycContacts: {
$regexFind: { input: "$phone", regex: /^(718).*|^(212).*|^(917).*/ }
}
}
}
])

For documents which are matched by the regex pattern, the captures array includes the matching capture group and replaces any non-capturing groups with null:

{ "_id" : 1, "nycContacts" : { "match" : "718-555-0113", "idx" : 0, "captures" : [ "718", null, null ] } }
{ "_id" : 2, "nycContacts" : { "match" : "212-555-8832", "idx" : 0, "captures" : [ null, "212", null ] } }
{ "_id" : 3, "nycContacts" : null }
{ "_id" : 4, "nycContacts" : null }
{ "_id" : 5, "nycContacts" : { "match" : "917-555-4414", "idx" : 0, "captures" : [ null, null, "917" ] } }

To illustrate the behavior of the $regexFind operator as discussed in this example, create a sample collection products with the following documents:

db.products.insertMany([
{ _id: 1, description: "Single LINE description." },
{ _id: 2, description: "First lines\nsecond line" },
{ _id: 3, description: "Many spaces before line" },
{ _id: 4, description: "Multiple\nline descriptions" },
{ _id: 5, description: "anchors, links and hyperlinks" },
{ _id: 6, description: "métier work vocation" }
])

By default, $regexFind performs a case-sensitive match. For example, the following aggregation performs a case-sensitive $regexFind on the description field. The regex pattern /line/ does not specify any grouping:

db.products.aggregate([
{ $addFields: { returnObject: { $regexFind: { input: "$description", regex: /line/ } } } }
])

The operation returns the following:

{ "_id" : 1, "description" : "Single LINE description.", "returnObject" : null }
{ "_id" : 2, "description" : "First lines\nsecond line", "returnObject" : { "match" : "line", "idx" : 6, "captures" : [ ] } }
{ "_id" : 3, "description" : "Many spaces before line", "returnObject" : { "match" : "line", "idx" : 23, "captures" : [ ] } }
{ "_id" : 4, "description" : "Multiple\nline descriptions", "returnObject" : { "match" : "line", "idx" : 9, "captures" : [ ] } }
{ "_id" : 5, "description" : "anchors, links and hyperlinks", "returnObject" : null }
{ "_id" : 6, "description" : "métier work vocation", "returnObject" : null }

The following regex pattern /lin(e|k)/ specifies a grouping (e|k) in the pattern:

db.products.aggregate([
{ $addFields: { returnObject: { $regexFind: { input: "$description", regex: /lin(e|k)/ } } } }
])

The operation returns the following:

{ "_id" : 1, "description" : "Single LINE description.", "returnObject" : null }
{ "_id" : 2, "description" : "First lines\nsecond line", "returnObject" : { "match" : "line", "idx" : 6, "captures" : [ "e" ] } }
{ "_id" : 3, "description" : "Many spaces before line", "returnObject" : { "match" : "line", "idx" : 23, "captures" : [ "e" ] } }
{ "_id" : 4, "description" : "Multiple\nline descriptions", "returnObject" : { "match" : "line", "idx" : 9, "captures" : [ "e" ] } }
{ "_id" : 5, "description" : "anchors, links and hyperlinks", "returnObject" : { "match" : "link", "idx" : 9, "captures" : [ "k" ] } }
{ "_id" : 6, "description" : "métier work vocation", "returnObject" : null }

In the return option, the idx field is the code point index and not the byte index. To illustrate, consider the following example that uses the regex pattern /tier/:

db.products.aggregate([
{ $addFields: { returnObject: { $regexFind: { input: "$description", regex: /tier/ } } } }
])

The operation returns the following where only the last record matches the pattern and the returned idx is 2 (instead of 3 if using a byte index)

{ "_id" : 1, "description" : "Single LINE description.", "returnObject" : null }
{ "_id" : 2, "description" : "First lines\nsecond line", "returnObject" : null }
{ "_id" : 3, "description" : "Many spaces before line", "returnObject" : null }
{ "_id" : 4, "description" : "Multiple\nline descriptions", "returnObject" : null }
{ "_id" : 5, "description" : "anchors, links and hyperlinks", "returnObject" : null }
{ "_id" : 6, "description" : "métier work vocation",
"returnObject" : { "match" : "tier", "idx" : 2, "captures" : [ ] } }

Note

You cannot specify options in both the regex and the options field.

To perform case-insensitive pattern matching, include the i option as part of the regex field or in the options field:

// Specify i as part of the regex field
{ $regexFind: { input: "$description", regex: /line/i } }
// Specify i in the options field
{ $regexFind: { input: "$description", regex: /line/, options: "i" } }
{ $regexFind: { input: "$description", regex: "line", options: "i" } }

For example, the following aggregation performs a case-insensitive $regexFind on the description field. The regex pattern /line/ does not specify any grouping:

db.products.aggregate([
{ $addFields: { returnObject: { $regexFind: { input: "$description", regex: /line/i } } } }
])

The operation returns the following documents:

{ "_id" : 1, "description" : "Single LINE description.", "returnObject" : { "match" : "LINE", "idx" : 7, "captures" : [ ] } }
{ "_id" : 2, "description" : "First lines\nsecond line", "returnObject" : { "match" : "line", "idx" : 6, "captures" : [ ] } }
{ "_id" : 3, "description" : "Many spaces before line", "returnObject" : { "match" : "line", "idx" : 23, "captures" : [ ] } }
{ "_id" : 4, "description" : "Multiple\nline descriptions", "returnObject" : { "match" : "line", "idx" : 9, "captures" : [ ] } }
{ "_id" : 5, "description" : "anchors, links and hyperlinks", "returnObject" : null }
{ "_id" : 6, "description" : "métier work vocation", "returnObject" : null }

Note

You cannot specify options in both the regex and the options field.

To match the specified anchors (e.g. ^, $) for each line of a multiline string, include the m option as part of the regex field or in the options field:

// Specify m as part of the regex field
{ $regexFind: { input: "$description", regex: /line/m } }
// Specify m in the options field
{ $regexFind: { input: "$description", regex: /line/, options: "m" } }
{ $regexFind: { input: "$description", regex: "line", options: "m" } }

The following example includes both the i and the m options to match lines starting with either the letter s or S for multiline strings:

db.products.aggregate([
{ $addFields: { returnObject: { $regexFind: { input: "$description", regex: /^s/im } } } }
])

The operation returns the following:

{ "_id" : 1, "description" : "Single LINE description.", "returnObject" : { "match" : "S", "idx" : 0, "captures" : [ ] } }
{ "_id" : 2, "description" : "First lines\nsecond line", "returnObject" : { "match" : "s", "idx" : 12, "captures" : [ ] } }
{ "_id" : 3, "description" : "Many spaces before line", "returnObject" : null }
{ "_id" : 4, "description" : "Multiple\nline descriptions", "returnObject" : null }
{ "_id" : 5, "description" : "anchors, links and hyperlinks", "returnObject" : null }
{ "_id" : 6, "description" : "métier work vocation", "returnObject" : null }

Note

You cannot specify options in both the regex and the options field.

To ignore all unescaped white space characters and comments (denoted by the un-escaped hash # character and the next new-line character) in the pattern, include the s option in the options field:

// Specify x in the options field
{ $regexFind: { input: "$description", regex: /line/, options: "x" } }
{ $regexFind: { input: "$description", regex: "line", options: "x" } }

The following example includes the x option to skip unescaped white spaces and comments:

db.products.aggregate([
{ $addFields: { returnObject: { $regexFind: { input: "$description", regex: /lin(e|k) # matches line or link/, options:"x" } } } }
])

The operation returns the following:

{ "_id" : 1, "description" : "Single LINE description.", "returnObject" : null }
{ "_id" : 2, "description" : "First lines\nsecond line", "returnObject" : { "match" : "line", "idx" : 6, "captures" : [ "e" ] } }
{ "_id" : 3, "description" : "Many spaces before line", "returnObject" : { "match" : "line", "idx" : 23, "captures" : [ "e" ] } }
{ "_id" : 4, "description" : "Multiple\nline descriptions", "returnObject" : { "match" : "line", "idx" : 9, "captures" : [ "e" ] } }
{ "_id" : 5, "description" : "anchors, links and hyperlinks", "returnObject" : { "match" : "link", "idx" : 9, "captures" : [ "k" ] } }
{ "_id" : 6, "description" : "métier work vocation", "returnObject" : null }

Note

You cannot specify options in both the regex and the options field.

To allow the dot character (i.e. .) in the pattern to match all characters including the new line character, include the s option in the options field:

// Specify s in the options field
{ $regexFind: { input: "$description", regex: /m.*line/, options: "s" } }
{ $regexFind: { input: "$description", regex: "m.*line", options: "s" } }

The following example includes the s option to allow the dot character (i.e. .) to match all characters including new line as well as the i option to perform a case-insensitive match:

db.products.aggregate([
{ $addFields: { returnObject: { $regexFind: { input: "$description", regex:/m.*line/, options: "si" } } } }
])

The operation returns the following:

{ "_id" : 1, "description" : "Single LINE description.", "returnObject" : null }
{ "_id" : 2, "description" : "First lines\nsecond line", "returnObject" : null }
{ "_id" : 3, "description" : "Many spaces before line", "returnObject" : { "match" : "Many spaces before line", "idx" : 0, "captures" : [ ] } }
{ "_id" : 4, "description" : "Multiple\nline descriptions", "returnObject" : { "match" : "Multiple\nline", "idx" : 0, "captures" : [ ] } }
{ "_id" : 5, "description" : "anchors, links and hyperlinks", "returnObject" : null }
{ "_id" : 6, "description" : "métier work vocation", "returnObject" : null }

Create a sample collection feedback with the following documents:

db.feedback.insertMany([
{ "_id" : 1, comment: "Hi, I'm just reading about MongoDB -- aunt.arc.tica@example.com" },
{ "_id" : 2, comment: "I wanted to concatenate a string" },
{ "_id" : 3, comment: "How do I convert a date to string? cam@mongodb.com" },
{ "_id" : 4, comment: "It's just me. I'm testing. fred@MongoDB.com" }
])

The following aggregation uses the $regexFind to extract the email from the comment field (case insensitive).

db.feedback.aggregate( [
{ $addFields: {
"email": { $regexFind: { input: "$comment", regex: /[a-z0-9_.+-]+@[a-z0-9_.+-]+\.[a-z0-9_.+-]+/i } }
} },
{ $set: { email: "$email.match"} }
] )
First Stage

The stage uses the $addFields stage to add a new field email to the document. The new field contains the result of performing the $regexFind on the comment field:

{ "_id" : 1, "comment" : "Hi, I'm just reading about MongoDB -- aunt.arc.tica@example.com", "email" : { "match" : "aunt.arc.tica@example.com", "idx" : 38, "captures" : [ ] } }
{ "_id" : 2, "comment" : "I wanted to concatenate a string", "email" : null }
{ "_id" : 3, "comment" : "I can't find how to convert a date to string. cam@mongodb.com", "email" : { "match" : "cam@mongodb.com", "idx" : 46, "captures" : [ ] } }
{ "_id" : 4, "comment" : "It's just me. I'm testing. fred@MongoDB.com", "email" : { "match" : "fred@MongoDB.com", "idx" : 28, "captures" : [ ] } }
Second Stage

The stage use the $set stage to reset the email to the current "$email.match" value. If the current value of email is null, the new value of email is set to null.

{ "_id" : 1, "comment" : "Hi, I'm just reading about MongoDB -- aunt.arc.tica@example.com", "email" : "aunt.arc.tica@example.com" }
{ "_id" : 2, "comment" : "I wanted to concatenate a string" }
{ "_id" : 3, "comment" : "I can't find how to convert a date to string. cam@mongodb.com", "email" : "cam@mongodb.com" }
{ "_id" : 4, "comment" : "It's just me. I'm testing. fred@MongoDB.com", "email" : "fred@MongoDB.com" }

Create a sample collection contacts with the following documents:

db.contacts.insertMany([
{ "_id" : 1, name: "Aunt Arc Tikka", details: [ "+672-19-9999", "aunt.arc.tica@example.com" ] },
{ "_id" : 2, name: "Belle Gium", details: [ "+32-2-111-11-11", "belle.gium@example.com" ] },
{ "_id" : 3, name: "Cam Bo Dia", details: [ "+855-012-000-0000", "cam.bo.dia@example.com" ] },
{ "_id" : 4, name: "Fred", details: [ "+1-111-222-3333" ] }
])

The following aggregation uses the $regexFind to convert the details array into an embedded document with an email and phone fields:

db.contacts.aggregate( [
{ $unwind: "$details" },
{ $addFields: {
"regexemail": { $regexFind: { input: "$details", regex: /^[a-z0-9_.+-]+@[a-z0-9_.+-]+\.[a-z0-9_.+-]+$/, options: "i" } },
"regexphone": { $regexFind: { input: "$details", regex: /^[+]{0,1}[0-9]*\-?[0-9_\-]+$/ } }
} },
{ $project: { _id: 1, name: 1, details: { email: "$regexemail.match", phone: "$regexphone.match" } } },
{ $group: { _id: "$_id", name: { $first: "$name" }, details: { $mergeObjects: "$details"} } },
{ $sort: { _id: 1 } }
])
First Stage

The stage $unwinds the array into separate documents:

{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : "+672-19-9999" }
{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : "aunt.arc.tica@example.com" }
{ "_id" : 2, "name" : "Belle Gium", "details" : "+32-2-111-11-11" }
{ "_id" : 2, "name" : "Belle Gium", "details" : "belle.gium@example.com" }
{ "_id" : 3, "name" : "Cam Bo Dia", "details" : "+855-012-000-0000" }
{ "_id" : 3, "name" : "Cam Bo Dia", "details" : "cam.bo.dia@example.com" }
{ "_id" : 4, "name" : "Fred", "details" : "+1-111-222-3333" }
Second Stage

The stage uses the $addFields stage to add new fields to the document that contains the result of the $regexFind for phone number and email:

{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : "+672-19-9999", "regexemail" : null, "regexphone" : { "match" : "+672-19-9999", "idx" : 0, "captures" : [ ] } }
{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : "aunt.arc.tica@example.com", "regexemail" : { "match" : "aunt.arc.tica@example.com", "idx" : 0, "captures" : [ ] }, "regexphone" : null }
{ "_id" : 2, "name" : "Belle Gium", "details" : "+32-2-111-11-11", "regexemail" : null, "regexphone" : { "match" : "+32-2-111-11-11", "idx" : 0, "captures" : [ ] } }
{ "_id" : 2, "name" : "Belle Gium", "details" : "belle.gium@example.com", "regexemail" : { "match" : "belle.gium@example.com", "idx" : 0, "captures" : [ ] }, "regexphone" : null }
{ "_id" : 3, "name" : "Cam Bo Dia", "details" : "+855-012-000-0000", "regexemail" : null, "regexphone" : { "match" : "+855-012-000-0000", "idx" : 0, "captures" : [ ] } }
{ "_id" : 3, "name" : "Cam Bo Dia", "details" : "cam.bo.dia@example.com", "regexemail" : { "match" : "cam.bo.dia@example.com", "idx" : 0, "captures" : [ ] }, "regexphone" : null }
{ "_id" : 4, "name" : "Fred", "details" : "+1-111-222-3333", "regexemail" : null, "regexphone" : { "match" : "+1-111-222-3333", "idx" : 0, "captures" : [ ] } }
Third Stage

The stage use the $project stage to output documents with the _id field, the name field and the details field. The details field is set to a document with email and phone fields, whose values are determined from the regexemail and regexphone fields, respectively.

{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : { "phone" : "+672-19-9999" } }
{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : { "email" : "aunt.arc.tica@example.com" } }
{ "_id" : 2, "name" : "Belle Gium", "details" : { "phone" : "+32-2-111-11-11" } }
{ "_id" : 2, "name" : "Belle Gium", "details" : { "email" : "belle.gium@example.com" } }
{ "_id" : 3, "name" : "Cam Bo Dia", "details" : { "phone" : "+855-012-000-0000" } }
{ "_id" : 3, "name" : "Cam Bo Dia", "details" : { "email" : "cam.bo.dia@example.com" } }
{ "_id" : 4, "name" : "Fred", "details" : { "phone" : "+1-111-222-3333" } }
Fourth Stage

The stage uses the $group stage to groups the input documents by their _id value. The stage uses the $mergeObjects expression to merge the details documents.

{ "_id" : 3, "name" : "Cam Bo Dia", "details" : { "phone" : "+855-012-000-0000", "email" : "cam.bo.dia@example.com" } }
{ "_id" : 4, "name" : "Fred", "details" : { "phone" : "+1-111-222-3333" } }
{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : { "phone" : "+672-19-9999", "email" : "aunt.arc.tica@example.com" } }
{ "_id" : 2, "name" : "Belle Gium", "details" : { "phone" : "+32-2-111-11-11", "email" : "belle.gium@example.com" } }
Fifth Stage

The stage uses the $sort stage to sort the documents by the _id field.

{ "_id" : 1, "name" : "Aunt Arc Tikka", "details" : { "phone" : "+672-19-9999", "email" : "aunt.arc.tica@example.com" } }
{ "_id" : 2, "name" : "Belle Gium", "details" : { "phone" : "+32-2-111-11-11", "email" : "belle.gium@example.com" } }
{ "_id" : 3, "name" : "Cam Bo Dia", "details" : { "phone" : "+855-012-000-0000", "email" : "cam.bo.dia@example.com" } }
{ "_id" : 4, "name" : "Fred", "details" : { "phone" : "+1-111-222-3333" } }

Create a sample collection employees with the following documents:

db.employees.insertMany([
{ "_id" : 1, name: "Aunt Arc Tikka", "email" : "aunt.tica@example.com" },
{ "_id" : 2, name: "Belle Gium", "email" : "belle.gium@example.com" },
{ "_id" : 3, name: "Cam Bo Dia", "email" : "cam.dia@example.com" },
{ "_id" : 4, name: "Fred" }
])

The employee email has the format <firstname>.<lastname>@example.com. Using the captured field returned in the $regexFind results, you can parse out user names for employees.

db.employees.aggregate( [
{ $addFields: {
"username": { $regexFind: { input: "$email", regex: /^([a-z0-9_.+-]+)@[a-z0-9_.+-]+\.[a-z0-9_.+-]+$/, options: "i" } },
} },
{ $set: { username: { $arrayElemAt: [ "$username.captures", 0 ] } } }
] )
First Stage

The stage uses the $addFields stage to add a new field username to the document. The new field contains the result of performing the $regexFind on the email field:

{ "_id" : 1, "name" : "Aunt Arc Tikka", "email" : "aunt.tica@example.com", "username" : { "match" : "aunt.tica@example.com", "idx" : 0, "captures" : [ "aunt.tica" ] } }
{ "_id" : 2, "name" : "Belle Gium", "email" : "belle.gium@example.com", "username" : { "match" : "belle.gium@example.com", "idx" : 0, "captures" : [ "belle.gium" ] } }
{ "_id" : 3, "name" : "Cam Bo Dia", "email" : "cam.dia@example.com", "username" : { "match" : "cam.dia@example.com", "idx" : 0, "captures" : [ "cam.dia" ] } }
{ "_id" : 4, "name" : "Fred", "username" : null }
Second Stage

The stage use the $set stage to reset the username to the zero-th element of the "$username.captures" array. If the current value of username is null, the new value of username is set to null.

{ "_id" : 1, "name" : "Aunt Arc Tikka", "email" : "aunt.tica@example.com", "username" : "aunt.tica" }
{ "_id" : 2, "name" : "Belle Gium", "email" : "belle.gium@example.com", "username" : "belle.gium" }
{ "_id" : 3, "name" : "Cam Bo Dia", "email" : "cam.dia@example.com", "username" : "cam.dia" }
{ "_id" : 4, "name" : "Fred", "username" : null }

Tip

See also:

For more information on the behavior of the captures array and additional examples, see captures Output Behavior.

Back

$reduce

Next

$regexFindAll