Definition
New in version 5.0.
Returns the exponential moving average of numeric expressions applied to documents in a partition defined in the
$setWindowFields stage.
$expMovingAvg is only available in the
$setWindowFields stage.
$expMovingAvg syntax:
{ $expMovingAvg: { input: <input expression>, N: <integer>, alpha: <float> } }
$expMovingAvg takes a document with these fields:
Field | Description | ||
|---|---|---|---|
Specifies the expression to evaluate. Non-numeric expressions are ignored. | |||
An You must specify either N or alpha. You cannot specify both. The | |||
A You must specify either N or alpha. You cannot specify both. The |
Behavior
You must specify either N or alpha. You cannot specify both.
$expMovingAvg ignores non-numeric values, null values, and
missing fields.
Examples
Create a stockPrices collection that contains prices for stocks
named "MDB" and "MSFT":
db.stockPrices.insertMany( [ { stock: "MDB", date: new Date( "2020-05-18T20:00:00Z" ), price: 13 }, { stock: "MDB", date: new Date( "2020-05-19T20:00:00Z" ), price: 15.4 }, { stock: "MDB", date: new Date( "2020-05-20T20:00:00Z" ), price: 12 }, { stock: "MDB", date: new Date( "2020-05-21T20:00:00Z" ), price: 11.7 }, { stock: "MSFT", date: new Date( "2020-05-18T20:00:00Z" ), price: 82 }, { stock: "MSFT", date: new Date( "2020-05-19T20:00:00Z" ), price: 94 }, { stock: "MSFT", date: new Date( "2020-05-20T20:00:00Z" ), price: 112 }, { stock: "MSFT", date: new Date( "2020-05-21T20:00:00Z" ), price: 97.3 } ] )
Exponential Moving Average Using N
This example uses $expMovingAvg in the
$setWindowFields stage to output the exponential moving
average for the stock prices weighted for two historical documents (two
days for the example documents) using N set to
2:
db.stockPrices.aggregate( [ { $setWindowFields: { partitionBy: "$stock", sortBy: { date: 1 }, output: { expMovingAvgForStock: { $expMovingAvg: { input: "$price", N: 2 } } } } } ] )
In the example:
partitionBy: "$stock"partitions the documents in the collection bystock. There are partitions for"MDB"and"MSFT".sortBy: { date: 1 }sorts the documents in each partition bydatein ascending order (1), so the earliestdateis first.outputreturns the exponential moving average for the stockpricefield with N set to2:In the input documents, there is one document for each day and the documents are ordered by
date. Therefore, with N is set to2, thepricein the current document and thepricein the previous document, if available, are allocated the highest weight in the exponential moving average formula.The exponential moving average for the
pricefield is stored in a new field calledexpMovingAvgForStocks, as shown in the following results.
{ "_id" : ObjectId("60d11fef833dfeadc8e6286b"), "stock" : "MDB", "date" : ISODate("2020-05-18T20:00:00Z"), "price" : 13, "expMovingAvgForStock" : 13 } { "_id" : ObjectId("60d11fef833dfeadc8e6286c"), "stock" : "MDB", "date" : ISODate("2020-05-19T20:00:00Z"), "price" : 15.4, "expMovingAvgForStock" : 14.6 } { "_id" : ObjectId("60d11fef833dfeadc8e6286d"), "stock" : "MDB", "date" : ISODate("2020-05-20T20:00:00Z"), "price" : 12, "expMovingAvgForStock" : 12.866666666666667 } { "_id" : ObjectId("60d11fef833dfeadc8e6286e"), "stock" : "MDB", "date" : ISODate("2020-05-21T20:00:00Z"), "price" : 11.7, "expMovingAvgForStock" : 12.088888888888889 } { "_id" : ObjectId("60d11fef833dfeadc8e6286f"), "stock" : "MSFT", "date" : ISODate("2020-05-18T20:00:00Z"), "price" : 82, "expMovingAvgForStock" : 82 } { "_id" : ObjectId("60d11fef833dfeadc8e62870"), "stock" : "MSFT", "date" : ISODate("2020-05-19T20:00:00Z"), "price" : 94, "expMovingAvgForStock" : 90 } { "_id" : ObjectId("60d11fef833dfeadc8e62871"), "stock" : "MSFT", "date" : ISODate("2020-05-20T20:00:00Z"), "price" : 112, "expMovingAvgForStock" : 104.66666666666667 } { "_id" : ObjectId("60d11fef833dfeadc8e62872"), "stock" : "MSFT", "date" : ISODate("2020-05-21T20:00:00Z"), "price" : 97.3, "expMovingAvgForStock" : 99.75555555555556 }
Exponential Moving Average Using alpha
This example uses $expMovingAvg in the
$setWindowFields stage to output the exponential moving
average for the stock prices using alpha set
to 0.75:
db.stockPrices.aggregate( [ { $setWindowFields: { partitionBy: "$stock", sortBy: { date: 1 }, output: { expMovingAvgForStock: { $expMovingAvg: { input: "$price", alpha: 0.75 } } } } } ] )
In the example:
partitionBy: "$stock"partitions the documents in the collection bystock. There are partitions for"MDB"and"MSFT".sortBy: { date: 1 }sorts the documents in each partition bydatein ascending order (1), so the earliestdateis first.outputsets the exponential moving average for the stock prices in a new field calledexpMovingAvgForStock, as shown in the following results. The value for alpha is set to0.75in the exponential moving average formula.
{ "_id" : ObjectId("60d11fef833dfeadc8e6286b"), "stock" : "MDB", "date" : ISODate("2020-05-18T20:00:00Z"), "price" : 13, "expMovingAvgForStock" : 13 } { "_id" : ObjectId("60d11fef833dfeadc8e6286c"), "stock" : "MDB", "date" : ISODate("2020-05-19T20:00:00Z"), "price" : 15.4, "expMovingAvgForStock" : 14.8 } { "_id" : ObjectId("60d11fef833dfeadc8e6286d"), "stock" : "MDB", "date" : ISODate("2020-05-20T20:00:00Z"), "price" : 12, "expMovingAvgForStock" : 12.7 } { "_id" : ObjectId("60d11fef833dfeadc8e6286e"), "stock" : "MDB", "date" : ISODate("2020-05-21T20:00:00Z"), "price" : 11.7, "expMovingAvgForStock" : 11.95 } { "_id" : ObjectId("60d11fef833dfeadc8e6286f"), "stock" : "MSFT", "date" : ISODate("2020-05-18T20:00:00Z"), "price" : 82, "expMovingAvgForStock" : 82 } { "_id" : ObjectId("60d11fef833dfeadc8e62870"), "stock" : "MSFT", "date" : ISODate("2020-05-19T20:00:00Z"), "price" : 94, "expMovingAvgForStock" : 91 } { "_id" : ObjectId("60d11fef833dfeadc8e62871"), "stock" : "MSFT", "date" : ISODate("2020-05-20T20:00:00Z"), "price" : 112, "expMovingAvgForStock" : 106.75 } { "_id" : ObjectId("60d11fef833dfeadc8e62872"), "stock" : "MSFT", "date" : ISODate("2020-05-21T20:00:00Z"), "price" : 97.3, "expMovingAvgForStock" : 99.6625 }