Rajesh Vinayagam

3 results

Migrating Terabytes of IoT Data from Azure Cosmos DB to MongoDB Atlas

In 2020, a large European energy company began an ambitious plan to replace its traditional metering devices — all 7.6 million of them — with smart meters. That would allow the energy company to monitor gas use remotely and allow customers’ bills to more accurately reflect their energy consumption. At the same time, the company began installing smart components along their production network to monitor operations in real-time, manage alarms, use predictive maintenance tools, and find leaks using advanced technologies. The energy company knew this shift would result in a massive amount of data coming into their systems, and they thought they were ready for it. They understood the complexities of managing and leveraging data from the Internet of Things (IoT), such as the high velocity at which data must be ingested and the need for time-based data aggregations. They rolled out an IoT platform with big data and analytics tools to help them make progress toward their objectives of high-quality, efficient, and safe service. This article looks at how the company migrated their system to MongoDB Atlas in order to handle the massive influx of data. Managing data The energy company was managing 3TB of data on Microsoft’s Azure Cosmos DB , with the remainder housed and managed on a relational database. However, they started facing challenges with Cosmos DB, including a lack of scalability, increasing costs, and poor performance. The costs to maintain the pre-production and production environments were also becoming unsustainable. And, the situation wasn’t going to get better: By 2023, the energy company planned to increase the number of IoT devices and sensors by a factor of five, so they knew that Cosmos DB was not a viable solution for the long term. Migrating to MongoDB Atlas The energy company decided to migrate to MongoDB Atlas for several reasons. Atlas’ online archive, combined with the ability to create time-series sharded collections, makes Atlas an ideal fit for IoT data, as does the flexibility of the document data model. Additionally, a Cosmos DB-compatible API would minimize the impact on application code and make it easier to migrate applications. The customer chose PeerIslands to be its technical partner and help them make the migration. PeerIslands, a MongoDB partner, is an enterprise-class digital transformation company with an expert, multilingual team with significant experience working across multiple technologies and cloud platforms. PeerIslands has developed solutions for both homogenous and heterogenous workload migrations. Among these solutions is a Cosmos to MongoDB tool that helps perform one-time migrations and change data capture while minimizing downtime. The tool is fully GUI-based, and tasks such as infrastructure provisioning, dump and restore, change stream listeners, and processors have all been automated. For change capture, the tool uses the native MongoDB change stream APIs. Migration challenges In working with the energy company to perform the migration, the PeerIslands team faced two particular challenges: The large volume of data. Initial snapshotting of the data would take about one day. The application had significant write loads. On average, it was writing about 12,000 messages per second. However, the load was unevenly distributed, with spikes when devices would “wake up” and report their status. These two factors quickly generated close to 20 million change events in Cosmos DB that had to be synced to MongoDB. Meanwhile, new data was constantly being written into the Cosmos DB source. Cosmos2Atlas tool PeerIslands’ Cosmos2Atlas tool uses mongodump and mongorestore for one-time data migration and MongoDB Kafka Connector for real-time data synchronization. By using Apache Kafka, the Cosmos2Atlas tool was able to handle the large amount of change stream data and successfully manage the migration. To address the complexity of the migration, PeerIslands also enhanced the Cosmos2Atlas tool with additional capabilities: Parallelize the Kafka change stream processing using partitions. The Kafka partitioning strategy was in sync with the target Atlas sharding strategy. Use ReplaceOneBusinessKeyStrategy as the write model for Kafka MongoDB sink connector to write into sharded Atlas collections. By using its in-house Cosmos2Atlas tooling, PeerIslands was able to successfully complete the migration with near-zero downtime. Improved performance With the migration complete, the customer has already begun to realize the benefits of MongoDB Atlas for their massive amounts of IoT data. The user interface has become extremely responsive, even in front of more expensive queries. Because of the improved performance of the database, the customer is now able to pursue improvements and efficiencies in other areas. With better performance, the company expects consumption of the data to rise and their schema design to evolve. They’re looking to leverage the time-series benefits of MongoDB both to simplify their schema design and deliver richer IoT functionality. They’re also better equipped to rapidly respond to and fulfill business needs, because the database is no longer a limitation. Importantly, costs have decreased for the production environment, and even more dramatic cost reductions have been seen for the pre-production environment. Learn more about the Cosmos2Atlas tool and MongoDB’s time series capabilities . Interested in your own data migration? Contact us .

July 11, 2022

PeerIslands Cosmos DB Migrator Tool to MongoDB Atlas on Google Cloud

When you’re in the midst of innovating, the last thing you want to worry about is infrastructure. Whether you’re looking to streamline inventory management or reimagine marketing, you need applications that can scale fast and maintain high availability. That’s where MongoDB Atlas on Google Cloud comes in. With MongoDB Atlas’ general-purpose, document-based database, users can free themselves from the hassle of database management, and give back precious time to developers to focus on innovation. Combine these benefits with Google Cloud’s cloud computing power, high availability, and ability to integrate with tools like BigQuery, Dataflow, Dataproc and more, and it’s hard to find a comparable joint solution. In fact, many current Microsoft Azure Cosmos DB users are now considering making the move to MongoDB. Microsoft’s Cosmos DB only supports single partition transactions, has no schema governance and forces developers to work with five different APIs to deliver full application functionality. Conversely, MongoDB Atlas on Google Cloud supports distributed multi-document ACID transactions, includes schema governance, and offers integrated full-text search, auto-archiving, data lakes, and edge-to-cloud data sync. The following blog illustrates how PeerIslands’ Cosmos DB Migrator tool can help users move from Cosmos DB to MongoDB Atlas on Google Cloud. Why PeerIslands PeerIslands is an enterprise-class digital transformation company composed of a team of polyglots who are comfortable across multiple technologies and cloud platforms. As a services firm, PeerIslands is focused on helping customers with both cloud-native development and application transformation. With best-in-the-industry talent, PeerIslands has been working with the MongoDB team to build a suite of solutions around two key objectives: For a customer evaluating MongoDB, how can we rapidly address common questions? Once a customer has chosen MongoDB, how can we reduce time to value by rapidly migrating workloads to MongoDB? With this in mind, PeerIslands developed a suite of tools around schema generation, understanding MongoDB query performance, as well as helping customers understand code changes required for upgrading MongoDB versions. In terms of workload migrations, PeerIslands developed solutions for both homogenous and heterogenous migrations. The company is also contributing to the open source community with a mobile app for enabling MongoDB admins to manage Atlas on the go. PeerIslands' Cosmos DB migration use case The current approach for migrating data from Cosmos DB to MongoDB is to use MongoDB dump and restore. But there are several problems with this approach. It’s fully manual and CLI-based which creates a poor user experience and requires technical resources even for simple migrations. There’s a lack of change capture capability which requires downtime during the duration of migration. For large Cosmos DB migrations, this causes significant issues. The team is also under pressure to deliver the entire migration in a short period of time. Migrations often get delayed as customers have difficulty identifying the right migration window. The Cosmos to MongoDB tool is a “Live Migrate” like tool that helps perform one-time migrations and change data capture from Cosmos DB (MongoDB model) to MongoDB Atlas and minimizes downtime requirements associated with migrations. The tool is fully GUI-based and nearly everything is automated. All the tasks for infrastructure provisioning, dump & restore, change stream listeners and processors have all been automated with a graphical user interface (GUI). The Cosmos to Mongo migration tool uses native MongoDB tools and the performance is similar to native tools. For change capture, we leverage the native MongoDB change stream APIs. A high level view of the solution is provided in figure 1 below: Figure 1: Solution Map Migration steps: Migration configuration: Provide the name of the migration task, source Cosmos DB details, and target MongoDB details. The tool supports key vault integration as well. Migration infrastructure provisioning: Provide migration infrastructure details required for creating the VM (Virtual Machine) including location, type of VM instance, etc. Migration execution: Allow for automation of the migration once the configuration is complete. The migration is executed in 3 steps: backup, restore and change event processing. As a user, you can initiate the backup process. The change event listener is started in parallel with the backup process and captures all the changes. Once the backup is complete, the user can restore the initial data and then perform change event processing to apply all the changes to MongoDB. Migration validation: The tool also provides facilities for validating the migration. Users can view the total number of documents on both source Cosmos DB collection and target MongoDB collection. They can also compare random documents picked up from Cosmos DB and MongoDB side by side and validate whether the data elements have been loaded correctly. For a more detailed demo and description of events, watch the following video: Migrating to a new database can feel daunting at first, but PeerIslands Cosmos DB migrator makes it easy. Major concerns like delays and downtime are eliminated from the process, helping you run your business smoothly and reap the benefits of MongoDB more quickly. And with PeerIslands suite of tools, you can rapidly address MongoDB-specific questions and accelerate time to value. Reach out today to get started

December 9, 2021

Make Migrating to MongoDB Atlas on AWS Easy with PeerIslands Modernization Tool Set

As cloud computing becomes commonplace across industries, organizations are rapidly adopting MongoDB Atlas because they know that true modernization is about more than just moving data as-is to the cloud—i.e. taking a “lift and shift” approach. It’s also about remodeling that same data along the way for faster and more iterative development. With MongoDB’s document-based database, developers are empowered to reimagine how they build with flexible schema design that allows them to easily model and remodel data for a wide range of use cases, while still applying governance when needed. MongoDB Atlas maps naturally to modern object-oriented programming languages, making developers' lives much easier. In contrast to the rigidity of SQL databases, MongoDB’s flexible data model means that your database schema can evolve with business requirements. This helps users build applications faster, handle diverse data types and manage applications more efficiently at scale. As a fully-managed service, MongoDB Atlas takes care of database maintenance for you and can also be scaled within and across multiple distributed data centers, providing new levels of availability and scalability previously unachievable with relational databases. The advantages of moving to MongoDB Atlas are clear, but some companies may still feel reluctant to leave behind the legacy relational databases they’re familiar with for unknown territory. This is where PeerIslands comes in. With PeerIslands, you don’t have to go it alone. The following blog introduces PeerIslands’ modernization capabilities, and how you can leverage them to migrate seamlessly to MongoDB Atlas on AWS. Why PeerIslands? PeerIslands is an enterprise-class digital transformation company composed of a team of polyglots who are comfortable across multiple technologies and cloud platforms. As a services firm, PeerIslands is focused on helping customers with both cloud-native development, and applications transformation. With best-in-the-industry talent, the team has helped several Fortune 50 companies bring large-scale transformations to life, and has received recognition from several clients and partners, including MongoDB. With engineers trained and certified in MongoDB, PeerIslands has helped MongoDB’s ISV and retail customers modernize, moving software built for on-prem to SaaS environments more conducive to cloud environments, and was named MongoDB’s Boutique System Integrator Partner of the Year . PeerIslands can swiftly transform and migrate core, legacy, and on-premises applications to the cloud. They develop solutions based on cutting-edge microservices and serverless architecture across public cloud platforms and hybrid PaaS platforms to help users quickly get applications to customers and business users. How PeerIslands can help PeerIslands has been working with MongoDB and AWS to develop tools that address two key objectives for customers: Objective 1: Tools that address common customer questions when evaluating MongoDB MongoDB Test Data Generator: A fully UI-driven tool with an extensive data library for rapidly loading MongoDB with use-case specific, near real-world data at scale MongoDB Performance Testing tool: A performance analyzer where you can create multiple load profiles, run-use case specific MongoDB queries and understand the performance of the queries. With the test data generator and the performance testing tool, customers can get a clear view of the performance of MongoDB for their specific situation even before migrating to MongoDB MongoDB Schema Generator and Data Modeler: SchemaGen tool helps to rapidly generate draft JSON schema from your existing SQL schema. On top of this, you can then perform the data modeling exercise and generate schema to form your MongoDB schema. The schema generator also provides key information about the SQL DB like size, index, and more MongoDB Sizer: MongoDB sizing tool helps you understand the size implications of your schema and calculate Atlas sizing. With the MongoDB sizer, customers can upload their own schema and calculate the various factors that influence the Atlas sizing Codescanner: A tool for scanning your code repositories for deprecated MongoDB APIs. With the code scanner, customers can get a clear view of the application impact for upgrading MongoDB versions Objective 2: Tools that accelerate time to value by rapidly moving workloads to MongoDB COSMOS2Atlas migration: A point-and-click solution that helps COSMOS customers migrate data from COSMOS to MongoDB. This solution provides change capture capability to ease downtime requirements and makes data migration easy and seamless 1Data: A tool for addressing more complex requirements of migrating data from SQL to MongoDB Admin mobile app: A mobile app for admins to track key Atlas KPIs and approve common access requests on the go PeerIslands brings to the table an entire suite of tools for addressing all your MongoDB needs. PeerIslands use-case featuring 1Data tool One of the key requirements of modernization projects is to solve large-scale data migrations from SQL databases. There are a number of tools that are available which simply replicate data from SQL to MongoDB—but, we rarely use the same SQL schema in MongoDB. Schema transformation—however difficult to do at scale—is nonetheless required so that we can make the best use of MongoDB capabilities. Today, the typical approach is to run custom Spark jobs as they are scalable and flexible when it comes to processing schema transformations and loading the data into MongoDB. But when you go beyond migrating one or two tables in a Proof of concept (PoC) setting, the problem becomes much more complex. For instance, writing custom Spark programs for every schema transformation is cumbersome and error-prone. For even simple migrations we will have tens of Spark programs. Any defects that occur during transformation are going to cause significant issues. Also consider the following challenges: How do you extract data out of your SQL database without impacting database performance? How do you handle infrastructure provisioning and scaling? How do you orchestrate the migration? Few master tables can be migrated once but transaction tables may need both one-time migration and a daily incremental migration. How can you do this orchestration at scale? How do you know whether you have not lost data during migration? Last but not the least, once a data is migrated how do you keep it up to date? We will probably end up with a suite of tools to address these issues–SQOOP, Kafka, Spark, some kind of a job orchestration engine, an observability suite, notification workflow and so on. It will quickly become evident that migrating data from SQL to MongoDB without disrupting business could be the most daunting barrier to adopting MongoDB. Unfortunately, current tools invariably fail for complex heterogeneous migration scenarios and developers end up writing a lot of custom code. Realizing this issue, PeerIslands has been working with MongoDB and AWS to develop 1Data. 1Data is a platform that helps enterprises perform migration and real time synchronization of data between SQL databases and MongoDB. 1Data is designed to complement existing AWS services like DMS in migrating data out of SQL. Key features of 1Data: Data is fully GUI based — There is no coding required 1Data provides a single platform for both one-time migration and continuous updates 1Data is consistent across one-time migration and continuous updates. This provides a good anti-corruption layer for continuous updates The tech stack of 1Data is based on Spark, Kafka among others and is highly scalable 1Data is highly modular and has a well defined API layer. 1Data can be easily extended to your needs 1Data automatically handles all the infrastructure required for migration with AWS quick start templates High Level Solution Architecture 1Data capabilities are realized through a decoupled and highly scalable architecture. The data extract, transformation and load part are independent of each other and can easily be customized based on the specific requirements of the customer. The architecture can orchestrate between batch-based initial loads and streaming-based CDC loads. A Spark, Kafka, and Airflow-based tech stack provides excellent scalability for the 1Data platform to handle large data migrations. Figure 1: 1Data High Level solution architecture OneData Portal structures migrations using Endpoints, Tasks and DAGs (Directed Acyclic Graphs) Endpoints define source, intermediate and final data locations and can come in the form of files, databases or queues. Endpoints can also be database extracts in S3 from AWS DMS service. Task definition is the second step in the migration. Tasks act on source point and produce data in either staging or destination end point. There are a number of predefined tasks available:Extract, Transformation, Sink and Validation tasks. You can configure both streaming and batch tasks. Defining the DAGs is the final step before actual migration. DAGs are used to define the sequence in which a user wants to execute the defined tasks. The technology components used in 1Data allows for easily handling very large data migrations. Each of the components has been selected such that they can be deployed across multiple cloud platforms and can be scaled easily. Technology Stack details below: Web Portal:                Angular WebAPI:                  Node Configuration Database:          MongoDB Data Transformation & Validation:      Spark Data Extraction:              Sqoop, Spark, DMS Change Data Capture:           Kafka, Debezium Data Sink:                Spark Job/Task Orchestrator:          Airflow PeerIslands has worked with AWS and MongoDB to create a Quick Start for 1Data. With Quick Start, customers can rapidly instantiate 1Data for their migration requirements. To recap, with 1Data Quick start on AWS, we can Perform heterogeneous schema transformation from SQL and load data into MongoDB Atlas on AWS Weave together continuous data updates, incremental data updates and one-time migration using a combination of batch and streaming jobs Orchestrate the migrations tasks Validate the migration ...And all without writing a single line of code! Demo Looking forward A modern, data architecture can help you unlock your business’ full potential, and gain real-time access to the insights you need, when you need them. MongoDB’s document-based database and flexible schema design help you make smarter decisions, cut costs, and take full advantage of AI/ML capabilities to empower your employees and raise customer satisfaction. The decision to migrate off your legacy systems and onto MongoDB is easy—and now the process is, too. Let PeerIslands help you get there. Our best-in-class teams leverage next-generation technologies, including Artificial Intelligence (AI), Augmented Reality (AR), Blockchain, Internet of Things (IoT), Machine Learning (ML), Mobile, and Virtual Reality (VR). Our expertise spans the modern programming stack, and we follow best practices in distributed, agile, and lean principles as well as test-driven development and DevOp. Additional Resources ISV WMP Program Contact aws-isv-workload-migration@amazon.com for details Atlas Quick Start MongoDB Atlas Starter Package Atlas Migration Guide Atlas Migration Pattern Contact us with any questions around modernization with MongoDB, AWS, and PeerIslands.

October 28, 2021