Frank Sun

11 results

Elevating Database Performance: Introducing Query Insights in MongoDB Atlas

Today, at .local NYC, MongoDB Atlas introduced the new Query Insights tab, enhancing how users monitor, manage, and optimize their database performance directly within the Atlas UI. This new feature offers developers deeper insights into their database’s performance, with a more powerful query analysis tool and detailed namespace-level metrics for faster issue resolution and enhanced performance. Applications and workloads change over time, making it increasingly difficult to track inefficient queries that strain a database's resources. Metrics can spike for various reasons, and developers need the right tooling to determine the source of the problem so they can quickly identify and resolve the issue. MongoDB Atlas's Query Insights directly tackles these challenges by enhancing MongoDB's observability capabilities with two crucial features: Namespace Insights and an upgraded Query Profiler. This post is also available in: Deutsch , Français , Español , Português , Italiano , 한국어 , 简体中文 . Query Insights delivers performance optimization through actionable intelligence The introduction of MongoDB Atlas Query Insights demonstrates MongoDB’s commitment to advanced database management. This feature enhances our platform’s observability capabilities with detailed and actionable insights. This feature integrates Namespace Insights and an upgraded Query Profiler within a new dynamic interface, helping boost database performance by streamlining diagnostics and reducing troubleshooting times. The newly added Namespace Insights provides users with collection-level latency statistics and a comprehensive view of how the hottest collections on a cluster perform over time. This enables developers to answer "Who or what is causing the problem?” which is instrumental in identifying performance trends and prioritizing query optimizations. The enhanced cluster-centric Query Profiler introduces a more comprehensive view of slow and inefficient queries over a broader period. Having an overall view of data across the entire cluster facilitates more straightforward navigation between nodes and a longer lookback period to identify trends. This ultimately reduces troubleshooting time, thereby enhancing developer productivity and improving overall database performance. Key benefits of Query Insights Query Insights brings MongoDB Atlas users several new benefits, including: Granular telemetry: Faster identification and resolution of database issues with namespace-level latency statistics Improved observability: It is easier to spot performance trends, identify root causes, and debug applications Enhanced productivity: Reduced troubleshooting time thanks to a more comprehensive view of slow operations Try it out! The Query Insights page provides more granular insights into database performance by providing collection and operation-level details. The Namespace Insights page provides metrics for the top 20 collections by total latency. Hover over the charts to see how collections perform relative to each other over time. This information makes it easier to answer the question: “who/what is causing the problem?” Use the Query Profiler to view specific slow operations. Click on a point in the scatter plot to bring up additional metadata about each slow operation. Click on View More Details to see more metrics and metadata about each slow operation, including the app name, the operation, the plan summary, execution stats, etc. Empowering users for peak performance The launch of Query Insights in MongoDB Atlas underscores MongoDB’s commitment to enhancing our platform's observability capabilities. By providing users with the necessary tools and insights for optimal database performance, MongoDB enables developers to spend less time debugging and more time creating—lowering the total cost of ownership and maximizing efficiency, adding significant value to our users' operations. Sign up for MongoDB Atlas , our cloud database service, to see Query Insights in action, and for more information, see Monitor Query Performance .

May 2, 2024

提升数据库性能:在 MongoDB Atlas 中引入 Query Insights

今天,MongoDB Atlas 在 .local 推出新的 Query Insights(查询见解)标签页,以便增强用户直接在 Atlas 用户界面中监控、管理和优化数据库性能的方式。此项新功能可通过更强大的查询分析工具和详细的命名空间级指标,让开发者更深入地了解数据库的性能,从而更快地解决问题并提高性能。 随着时间的推移,应用程序和工作负载也会发生变化,因此越发难以追踪造成数据库资源紧张的低效查询。指标可能会因各种原因而激增,因此开发者需要正确的工具来确定问题的根源,以便能快速识别和解决此问题。MongoDB Atlas 的 Query Insights 通过 Namespace Insights(命名空间见解)和升级后的查询分析器这两个关键功能来提升 MongoDB 的可观察性,从而直接应对这些挑战。 Query Insights 可通过可行的情报来实现性能优化 MongoDB Atlas Query Insights 的推出表明了 MongoDB 对实现高级数据库管理的承诺。此功能可通过详细且可操作的见解来增强平台的可观察性能力。此功能将命名空间见解和升级后的查询分析器集成到一个新的动态界面中,以便通过简化诊断和缩短故障排除时间来帮助提高数据库性能。 新增的 Namespace Insights 可为用户提供集合级的延迟统计信息,并全面了解集群上最热门的集合在一段时间内的性能。如此一来,开发者便可回答“谁或什么导致了此问题?”,从而有助于识别性能趋势和确定查询优化措施的优先级。 增强后的以集群为中心的查询分析器引入了更全面的视图,以显示更长时间段内缓慢且低效的查询。掌握整个集群中数据的整体情况有助于在各节点之间实现更顺畅的导航,并可延长回溯期以识别趋势。如此,最终便可缩短故障排除时间,从而提高开发者的工作效率并改善整体数据库性能。 Query Insights 的主要优点 Query Insights 可为 MongoDB Atlas 用户提供多项新的优点,其中包括: 精细化遥测: 利用命名空间级延迟统计信息更快地识别和解决数据库问题 提高可观察性: 更轻松地发现性能趋势、确定根本原因和调试应用程序 提高工作效率: 更全面地了解慢速操作,从而缩短故障排除时间 进行试用! Query Insights 页面可通过呈现集合与操作级别的详细信息来提供针对数据库性能的更精细见解。Namespace Insights>(命名空间见解>)页面可提供按总延迟时间划分的前 20 个集合的对应指标。 将鼠标悬停在图表上可查看集合在一段时间内的相对性能。这些信息有助于回答以下问题:“谁/什么导致了问题?” 使用查询分析器可查看特定的慢速操作。单击散点图中的某一点可显示有关每个慢速操作的其他元数据。 单击" View More Details "(查看更多详细信息)可查看有关每个慢速操作的更多指标和元数据,其中包括应用名称、操作、计划摘要、执行统计信息等。 帮助用户实现最佳性能 MongoDB Atlas 中 Query Insights 的推出突显了 MongoDB 对增强我们平台可观察性能力的承诺。通过为用户提供优化数据库性能所需的工具和见解,MongoDB 可助力开发者缩短调试时间并将更多时间用于创造,从而降低总体拥有成本、最大限度地提高效率并为用户的运营注入巨大价值。 注册我们的云数据库服务 MongoDB Atlas ,以便查看 Query Insights 的实际应用。有关更多信息,请参阅“ 监控查询性能 ”。

May 2, 2024

데이터베이스 성능 향상: MongoDB Atlas의 쿼리 인사이트(Query Insights) 출시

MongoDB Atlas는 오늘 .local NYC에서 사용자가 Atlas UI 내에서 바로 데이터베이스 성능을 더 효과적으로 모니터링, 관리 및 최적화할 수 있는 새로운 쿼리 인사이트(Query Insights) 탭을 선보였습니다. 이 새로운 기능은 개발자에게 데이터베이스 성능에 대한 보다 심층적인 인사이트를 제공합니다. 더욱 강력해진 쿼리 분석 도구와 상세한 네임스페이스 수준 메트릭을 통해 개발자는 문제를 더 빠르게 해결하고 성능을 개선할 수 있습니다. 애플리케이션과 워크로드는 시간이 지남에 따라 변화하기 때문에 데이터베이스의 리소스에 부담을 주는 비효율적인 쿼리를 추적하기가 점점 더 어려워집니다. 메트릭은 다양한 원인에 따라 증가할 수 있으며 개발자는 문제를 신속하게 식별하고 해결할 수 있도록 문제의 원인을 파악하는 데 적합한 도구가 필요합니다. MongoDB Atlas의 쿼리 인사이트는 네임스페이스 인사이트(Namespace Insights)와 향상된 쿼리 프로파일러(Query Profiler)라는 두 가지 주요 기능으로 MongoDB의 관찰 가능성을 강화하여 이러한 문제를 직접 해결합니다. 실행 가능한 인텔리전스를 통해 성능 최적화를 제공하는 쿼리 인사이트 MongoDB Atlas 쿼리 인사이트의 출시는 MongoDB가 최첨단 데이터베이스 관리를 제공하는 데 전념하고 있음을 보여줍니다. 이 기능은 상세하고 실행 가능한 인사이트를 제공하여 플랫폼의 관찰 가능성을 개선합니다. 또한 새로운 동적 인터페이스에 네임스페이스 인사이트와 향상된 쿼리 프로파일러를 통합하여 진단을 간소화하고 문제 해결 시간을 단축하여 데이터베이스 성능 향상에 도움을 줍니다. 새로 추가된 네임스페이스 인사이트 기능은 사용자에게 컬렉션 수준의 지연 시간 통계를 제공하고 클러스터에서 가장 사용량이 많은 컬렉션의 시간 경과에 따른 성능을 포괄적으로 보여줍니다. 이를 통해 개발자는 "누가 또는 무엇이 문제의 원인인가?"라는 질문에 답변할 수 있으며 이는 성능 추세를 파악하고 쿼리 최적화의 우선순위를 정하는 데 중요한 역할을 합니다. 향상된 클러스터 중심 쿼리 프로파일러는 더 광범위한 기간에 걸쳐 느리고 비효율적인 쿼리를 보다 포괄적으로 보여줍니다. 클러스터 전체에서 데이터를 포괄적으로 파악하면 노드 간 이동이 더 쉬워지고 추세를 파악할 수 있는 조회 기간이 더 길어집니다. 이는 결과적으로 문제 해결 시간을 단축해 주어 개발자 생산성이 향상되고 전반적인 데이터베이스 성능이 개선됩니다. 쿼리 인사이트의 주요 이점 쿼리 인사이트는 MongoDB Atlas 사용자에게 다음과 같은 몇 가지 새로운 이점을 제공합니다. 세분화된 원격 분석: 네임스페이스 수준의 지연 시간 통계를 통해 데이터베이스 문제를 더 빠르게 식별하고 해결할 수 있습니다. 향상된 관찰 가능성: 성능 추세를 더 쉽게 파악하고 근본 원인을 식별할 수 있으며 애플리케이션 디버깅이 더 용이해집니다. 생산성 향상: 느린 작업을 보다 포괄적으로 볼 수 있어 문제 해결 시간이 단축됩니다. 지금 이용해 보세요! 쿼리 인사이트 페이지는 컬렉션 및 운영 수준 세부 정보를 제공하여 데이터베이스 성능에 대한 보다 세분화된 인사이트를 제공합니다. 네임스페이스 인사이트 페이지는 총 지연 시간을 기준으로 상위 20개 컬렉션에 대한 메트릭을 제공합니다. 차트 위로 마우스를 가져가면 시간 경과에 따른 컬렉션의 상대적 성능을 파악할 수 있습니다. 이 정보를 통해 "누가 또는 무엇이 문제의 원인인가?"라는 질문에 더 쉽게 답할 수 있습니다. 쿼리 프로파일러를 사용하여 특정한 느린 작업을 볼 수 있습니다. 분산형 차트의 한 지점을 클릭하면 각 느린 작업에 대한 추가 메타데이터를 가져올 수 있습니다. 세부 정보 보기를 클릭하면 앱 이름, 작업, 계획 요약, 실행 통계 등 각 느린 작업에 대한 더 많은 메트릭과 메타데이터를 확인할 수 있습니다. 사용자가 최고의 역량을 발휘할 수 있도록 지원 MongoDB Atlas의 쿼리 인사이트 출시는 플랫폼의 관측 가능성을 강화하기 위한 MongoDB의 노력을 보여줍니다. MongoDB는 사용자가 디버깅 시간을 줄이고 개발에 더 많은 시간을 할애할 수 있도록 필요한 도구와 인사이트를 제공하여 데이터베이스 성능을 최적화합니다. 이를 통해 총소유비용이 절감되고 효율성이 극대화되며 사용자의 운영에 상당한 이점을 더해줍니다. 클라우드 데이터베이스 서비스인 MongoDB Atlas 에 등록하고 쿼리 인사이트의 실제 활용 사례를 알아보세요. 자세한 내용은 쿼리 성능 모니터링 을 참조하세요.

May 2, 2024

Elevando o desempenho do banco de dados: apresentando Query Insights no MongoDB Atlas

Hoje, no .local NYC, o MongoDB Atlas introduziu a nova guia "Insights de consultas", aprimorando como os usuários monitoram, gerenciam e otimizam o desempenho do banco de dados diretamente na IU do Atlas. Esse novo recurso oferece aos desenvolvedores insights mais profundos sobre o desempenho de seus bancos de dados, com uma ferramenta de análise de consultas mais avançada e métricas detalhadas em nível de namespace. Isso garante resolução mais rápida de problemas e desempenho aprimorado. Os aplicativos e as cargas de trabalho mudam com o tempo, dificultando cada vez mais consultas ineficientes que sobrecarregam os recursos de um banco de dados. As métricas podem apresentar picos por vários motivos, e os desenvolvedores precisam das ferramentas certas para determinar a origem do problema, identificá-lo e resolvê-lo com rapidez. Os insights de consultas do MongoDB Atlas abordam diretamente esses desafios, aprimorando os recursos de observabilidade do MongoDB com duas funcionalidades cruciais: insights do namespace e um analista de consultas atualizado. Os insights de consultas oferecem otimização de desempenho com inteligência acionável A introdução dos insights de consultas do MongoDB Atlas demonstra o compromisso do MongoDB com o gerenciamento avançado de banco de dados. Esse recurso aprimora as funções de observabilidade da nossa plataforma com insights detalhados e acionáveis. Essa novidade disponibiliza os insights de namespace e um analista de consultas atualizado em uma nova interface dinâmica para ajudar a aumentar o desempenho do banco de dados com diagnósticos mais simples e redução do tempo de resolução de problemas. Os insights de namespace, que também são novidade, fornecem aos usuários estatísticas de latência em nível de coleção e uma visão abrangente do desempenho das coleções mais usadas em um cluster ao longo do tempo. Isso permite que os desenvolvedores respondam à pergunta "Quem ou o que está causando o problema?", o que é fundamental para identificar tendências de desempenho e priorizar otimizações de consultas. O analista de consultas aprimorado e centrado no cluster apresenta uma visão mais abrangente das consultas lentas e ineficientes em um período mais amplo. Ter uma visão geral dos dados em todo o cluster viabiliza uma navegação mais direta entre os nós e um período de retrospectiva mais longo para ajudar na identificação de tendências. Isso reduz o tempo de solução de problemas e, em outras palavras, aumenta a produtividade do desenvolvedor e melhora o desempenho geral do banco de dados. Principais benefícios dos insights de consultas Os insights de consultas trazem aos usuários do MongoDB Atlas vários novos benefícios, como: Telemetria granular: identificação e resolução mais rápidas de problemas de banco de dados com estatísticas de latência no nível do namespace Observabilidade aprimorada: é mais fácil detectar tendências de desempenho, identificar causas raiz e depurar aplicativos Mais produtividade: redução do tempo de solução de problemas graças a uma visão mais abrangente das operações lentas Experimente! A página dos insights de consultas fornece insights mais detalhados sobre o desempenho do banco de dados, com detalhes em nível de coleção e operação. A página de insights de namespace fornece métricas para as 20 principais coleções por latência total. Passe o mouse sobre os gráficos para ver o desempenho comparativo das coleções ao longo do tempo. Essas informações são fundamentais para responder à pergunta "Quem/o que está causando o problema?" Use o analista de consultas para visualizar operações lentas específicas. Clique em um ponto no gráfico de dispersão para exibir metadados adicionais sobre cada operação lenta. Clique em "Exibir mais detalhes" para ver mais métricas e metadados sobre cada operação lenta, incluindo o nome do aplicativo, a operação, o resumo do plano, as estatísticas de execução etc. Capacitando os usuários para alcançar o desempenho máximo O lançamento dos insights de consultas no MongoDB Atlas destaca o compromisso do MongoDB em aprimorar os recursos de observabilidade da plataforma. Ao fornecer as ferramentas e os insights necessários para obter o desempenho ideal do banco de dados, o MongoDB permite que os desenvolvedores passem menos tempo depurando e mais tempo criando, o que reduz o custo total de propriedade e maximiza a eficiência. Esses benefícios agregam valor significativo às operações dos usuários. Cadastre-se no MongoDB Atlas , nosso serviço de banco de dados em nuvem, para ver os insights de consultas em ação. Se quiser obter mais detalhes, consulte " Monitorar o desempenho da consulta ".

May 2, 2024

Miglioramento delle prestazioni del database: introduzione di Query Insights in MongoDB Atlas

Oggi, a .local NYC, MongoDB Atlas ha introdotto la nuova tab Query Insights, migliorando il modo in cui gli utenti monitorano, gestiscono e ottimizzano le prestazioni del proprio database direttamente all'interno dell'IU di Atlas. Questa nuova funzionalità offre agli sviluppatori insight più approfonditi sulle prestazioni del loro database, con uno strumento di analisi delle query più potente e metriche dettagliate a livello di namespace per una risoluzione più rapida dei problemi e prestazioni migliorate. Le applicazioni e i carichi di lavoro cambiano nel tempo, rendendo sempre più difficile tenere traccia delle query inefficienti che mettono a dura prova le risorse di un database. Le metriche possono aumentare per vari motivi e gli sviluppatori necessitano degli strumenti giusti per determinare l'origine del problema in modo da poterlo identificare e risolvere rapidamente. Query Insights di MongoDB Atlas affronta direttamente queste sfide migliorando le capacità di osservabilità di MongoDB con due funzionalità cruciali: Namespace Insights e un Query Profiler aggiornato. Query Insights offre l'ottimizzazione delle prestazioni attraverso l'intelligence azionabile L'introduzione di MongoDB Atlas Query Insights dimostra l'impegno di MongoDB nella gestione avanzata dei database. Questa funzionalità migliora le capacità di osservabilità della nostra piattaforma con insight dettagliati e utilizzabili. Questa funzionalità integra Namespace Insights e un Query Profiler aggiornato in una nuova interfaccia dinamica, contribuendo a migliorare le prestazioni del database semplificando la diagnostica e riducendo i tempi di risoluzione dei problemi. La nuova funzionalità Namespace Insights fornisce agli utenti statistiche sulla latency a livello di collection e una visione completa delle prestazioni nel tempo delle collection più importanti di un cluster, consentendo agli sviluppatori di rispondere alla domanda "Chi o cosa sta causando il problema?", che è fondamentale per identificare le tendenze delle prestazioni e dare priorità alle ottimizzazioni delle query. Il Query Profiler migliorato e incentrato sul cluster introduce una visione più completa delle query lente e inefficienti su un periodo più ampio. Una visione globale dei dati dell'intero cluster facilita la navigazione tra i nodi e un periodo di riferimento più lungo per identificare le tendenze. Questo riduce i tempi di risoluzione dei problemi, aumentando la produttività degli sviluppatori e migliorando le prestazioni complessive del database. Vantaggi principali di Query Insights Query Insights offre agli utenti di MongoDB Atlas numerosi nuovi vantaggi, tra cui: Telemetria granulare: identificazione e risoluzione più rapida dei problemi del database con statistiche di latency a livello di namespace Osservabilità migliorata: è più semplice individuare le tendenze delle prestazioni, identificare le cause principali ed eseguire il debug delle applicazioni Maggiore produttività: tempi di risoluzione dei problemi ridotti grazie a una visione più completa delle operazioni lente Provare per credere! La pagina Query Insights fornisce insight più dettagliati sulle prestazioni del database, fornendo dettagli a livello di collection e di operazione. La pagina Namespace Insights> fornisce parametri per le prime 20 collection in base alla latency totale. Passa il mouse sui grafici per vedere come si comportano le collection l'una rispetto all'altra nel tempo. Queste informazioni facilitano la risposta alla domanda: "Chi/cosa sta causando il problema?" Usa Query Profiler per visualizzare specifiche operazioni lente. Fai clic su un punto nel grafico a dispersione per visualizzare metadati aggiuntivi su ciascuna operazione lenta. Fai clic su Visualizza più dettagli per visualizzare più metriche e metadati su ciascuna operazione lenta, incluso il nome dell'app, l'operazione, il riepilogo del piano, le statistiche di esecuzione, ecc. Consentiamo agli utenti di ottenere le massime prestazioni Il lancio di Query Insights in MongoDB Atlas sottolinea l'impegno di MongoDB nel migliorare le capacità di osservabilità della nostra piattaforma. Fornendo agli utenti gli strumenti e gli insight necessari per prestazioni ottimali del database, MongoDB consente agli sviluppatori di dedicare meno tempo al debug e più tempo alla creazione, riducendo il costo totale di proprietà e massimizzando l'efficienza, aggiungendo un valore significativo alle operazioni dei nostri utenti. Registrati su MongoDB Atlas , il nostro servizio di database cloud, per vedere Query Insights in azione e per ulteriori informazioni, consulta Monitorare le prestazioni delle query .

May 2, 2024

Améliorer les performances des bases de données : Introduction de Query Insights dans MongoDB Atlas

Aujourd’hui, à la conférence .local NYC, MongoDB Atlas a présenté le nouvel onglet Query Insights, qui améliore la façon dont les utilisateurs surveillent, gèrent et optimisent les performances de leur base de données directement dans l’interface utilisateur d’Atlas. Cette nouvelle fonctionnalité permet aux développeurs de mieux comprendre les performances de leur base de données, grâce à un outil d’analyse des requêtes plus puissant et à des métriques détaillées au niveau de l’espace de noms qui accélèrent la résolution des problèmes et améliorent les performances. Les applications et les charges de travail évoluant au fil du temps, il devient de plus en plus difficile d’assurer le suivi des requêtes inefficaces et coûteuses en ressources de base de données. Les métriques peuvent monter en flèche pour diverses raisons, et les développeurs ont besoin des bons outils pour déterminer la source du problème afin de pouvoir l’identifier et le résoudre rapidement. Query Insights de MongoDB Atlas relève directement ces défis en améliorant les capacités d’observabilité de MongoDB avec deux fonctionnalités essentielles : Namespace Insights et un profileur de requêtes mis à niveau. Query Insights offre une optimisation des performances grâce à des renseignements exploitables L’introduction de MongoDB Atlas Query Insights démontre l’engagement de MongoDB en faveur d’une gestion avancée des bases de données. Cette fonctionnalité améliore les capacités d’observabilité de notre plateforme grâce à des informations détaillées et exploitables. Cette fonctionnalité intègre Namespace Insights et un profileur de requête amélioré au sein d’une nouvelle interface dynamique, ce qui permet d’améliorer les performances des bases de données en rationalisant les diagnostics et en réduisant les temps de dépannage. Le nouveau Namespace Insights fournit aux utilisateurs des statistiques de latence au niveau des collections et une vue d’ensemble des performances des collections les plus actives d’un cluster au fil du temps. Les développeurs peuvent ainsi répondre à la question « qui ou quoi cause le problème ? », ce qui permet d’identifier les tendances dans les performances et de prioriser l’optimisation des requêtes. Le profileur de requêtes amélioré centré sur le cluster introduit une vue plus complète des requêtes lentes et inefficaces sur une période plus étendue. Le fait de disposer d’une vue globale des données sur l’ensemble du cluster facilite la navigation entre les nœuds et allonge la période d’analyse pour identifier les tendances. Au résultat, le temps de dépannage est réduit, la productivité des développeurs accrue et les performances globales de la base de données améliorées. Principaux avantages de Query Insights Query Insights apporte aux utilisateurs de MongoDB Atlas plusieurs nouveaux avantages, notamment : Télémétrie précise  identification et résolution plus rapides des problèmes de base de données grâce aux statistiques de latence au niveau de l’espace de noms Amélioration de l’observabilité : repérage des tendances dans les performances, identification de l’origine des problèmes et débogage des applications plus faciles Amélioration de la productivité : temps de dépannage réduit grâce à une vue plus complète des opérations lentes Faites l’essai ! La page Query Insights fournit des informations plus précises sur les performances de la base de données en affichant des détails au niveau de la collection et de l’opération. La page Namespace Insights affiche des métriques pour les 20 principales collections par latence totale. Passez la souris sur les graphiques pour voir les performances des collections les unes par rapport aux autres au fil du temps. Cette information permet de répondre plus facilement à la question « qui ou quoi cause le problème ? » Utilisez le profileur de requête pour visualiser des opérations lentes spécifiques. Cliquez sur un point du diagramme de dispersion pour afficher des métadonnées supplémentaires sur chaque opération lente. Cliquez sur « Afficher plus de détails » pour voir plus de métriques et de métadonnées sur chaque opération lente, dont le nom de l’application, l’opération, le résumé du plan, les statistiques d’exécution, etc. Permettre aux utilisateurs d’obtenir des performances optimales Le lancement de Query Insights dans MongoDB Atlas souligne l’engagement de MongoDB à améliorer les capacités d’observabilité de notre plateforme. En fournissant aux utilisateurs les outils et les informations nécessaires pour des performances de base de données optimales, MongoDB permet aux développeurs de passer moins de temps à déboguer et plus de temps à créer. Le coût total de possession est réduit et l’efficacité maximisée, ce qui ajoute une valeur significative aux opérations de nos utilisateurs. Inscrivez-vous à MongoDB Atlas , notre service de base de données cloud, pour voir Query Insights en action, et pour plus d’informations, consultez la page «  Surveiller les performances des requêtes  ».

May 2, 2024

Elevación del rendimiento de la base de datos: introducción de Query Insights en MongoDB Atlas

Hoy, en .local NYC, MongoDB Atlas introdujo la nueva pestaña Query Insights, que mejora la forma en que los usuarios monitorean, administran y optimizan el rendimiento de sus bases de datos directamente desde la interfaz de usuario de Atlas. Esta nueva característica ofrece a los desarrolladores una visión más profunda del rendimiento de su base de datos, con una herramienta de análisis de consultas más poderosa y métricas detalladas a nivel de espacio de nombres para una resolución de problemas más rápida y un rendimiento mejorado. Las aplicaciones y las cargas de trabajo cambian con el tiempo, lo que dificulta cada vez más el seguimiento de las consultas ineficientes que sobrecargan los recursos de una base de datos. Las métricas pueden aumentar por varias razones, y los desarrolladores necesitan las herramientas adecuadas para determinar el origen del problema, de modo que puedan identificarlo y resolverlo rápidamente. Query Insights de MongoDB Atlas aborda directamente estos desafíos al mejorar las capacidades de observabilidad de MongoDB con dos características cruciales: Namespace Insights y un Query Profiler actualizado. Query Insights ofrece optimización del rendimiento a través de inteligencia procesable La introducción de Query Insights de MongoDB Atlas demuestra el compromiso de MongoDB con la gestión avanzada de bases de datos. Esta característica mejora las capacidades de observabilidad de nuestra plataforma con información detallada y procesable. Esta función integra Namespace Insights y un Query Profiler actualizado dentro de una nueva interfaz dinámica, lo que ayuda a aumentar el rendimiento de la base de datos al optimizar los diagnósticos y reducir los tiempos de solución de problemas. La información de Namespace Insights recién agregada proporciona a los usuarios estadísticas de latencia a nivel de collection y una vista completa de cómo funcionan las collections más populares de un clúster a lo largo del tiempo. Esto permite a los desarrolladores responder a la pregunta "¿Quién o qué está causando el problema?", que es fundamental para identificar tendencias de rendimiento y priorizar optimizaciones de consultas. El Query Profiler mejorado centrado en clústeres presenta una visión más completa de las consultas lentas e ineficientes durante un periodo más amplio. Tener una vista general de los datos de todo el clúster facilita una navegación más sencilla entre los nodos y un periodo retrospectivo más largo para identificar tendencias. En última instancia, esto reduce el tiempo de resolución de problemas, lo que mejora la productividad de los desarrolladores y el rendimiento general de la base de datos. Beneficios clave de Query Insights Query Insights ofrece a los usuarios de MongoDB Atlas varios beneficios nuevos, que incluyen: Telemetría granular: identificación y resolución más rápidas de problemas de base de datos con estadísticas de latencia a nivel de Namespace Observabilidad mejorada: es más fácil detectar tendencias de rendimiento, identificar causas raíz y depurar aplicaciones Productividad mejorada: se reduce el tiempo de resolución de problemas gracias a una visión más completa de las operaciones lentas ¡Pruébelo! La página Query Insights proporciona información más detallada sobre el rendimiento de la base de datos al proporcionar detalles de nivel operativo y collection. La página Namespace Insights> proporciona métricas para las 20 collection principales por latencia total. Pase el cursor sobre los gráficos para ver cómo se comportan las collection entre sí a lo largo del tiempo. Esta información facilita la respuesta a la pregunta: “¿Quién o qué está causando el problema?” Use el Query Profiler para ver operaciones lentas específicas. Haga clic en un punto del diagrama de dispersión para que aparezcan metadatos adicionales sobre cada operación lenta. Haga clic en Ver más detalles para ver más métricas y los metadatos sobre cada operación lenta, incluido el nombre de la aplicación, la operación, el resumen del plan, las estadísticas de ejecución, etc. Cómo empoderar a los usuarios para que obtengan el máximo rendimiento El lanzamiento de Query Insights en MongoDB Atlas subraya el compromiso de MongoDB de mejorar las capacidades de observabilidad de nuestra plataforma. Al proporcionar a los usuarios las herramientas y los conocimientos necesarios para un rendimiento óptimo de la base de datos, MongoDB permite a los desarrolladores dedicar menos tiempo a la depuración y más tiempo a la creación, lo que reduce el costo total de propiedad y maximiza la eficiencia, agregando así un valor significativo a las operaciones de nuestros usuarios. Regístrese en MongoDB Atlas , nuestro servicio de base de datos de cloud, para ver Query Insights en acción, y para obtener más información, consulte Supervisar el rendimiento de las consultas .

May 2, 2024

Verbesserung der Datenbankleistung: Einführung von Query Insights in MongoDB Atlas

Heute bei .local NYC hat MongoDB Atlas die neue Registerkarte „Query Insights“ eingeführt, mit der Benutzer die Leistung ihrer Datenbank direkt in der Atlas-Benutzeroberfläche überwachen, verwalten und optimieren können. Diese neue Funktion bietet Entwicklern tiefere Einblicke in die Leistung ihrer Datenbank mit einem leistungsfähigeren Abfrageanalysetool und detaillierten Metriken auf Namespace-Ebene für eine schnellere Problemlösung und verbesserte Leistung. Anwendungen und Workloads ändern sich im Laufe der Zeit, sodass es immer schwieriger wird, ineffiziente Abfragen zu verfolgen, die die Ressourcen einer Datenbank belasten. Metriken können aus verschiedenen Gründen in die Höhe schnellen, und die Entwickler benötigen die richtigen Tools, um die Ursache des Problems zu ermitteln, damit sie das Problem schnell identifizieren und beheben können. Query Insights von MongoDB Atlas geht diese Herausforderungen direkt an, indem es die Beobachtungsmöglichkeiten von MongoDB um zwei entscheidende Funktionen erweitert: Namespace Insights und ein verbesserter Query Profiler. Query Insights bietet Leistungsoptimierung durch umsetzbare Informationen Die Einführung von MongoDB Atlas Query Insights zeigt das Engagement von MongoDB für fortschrittliches Datenbankmanagement. Diese Funktion erweitert die Beobachtungsmöglichkeiten unserer Plattform um detaillierte und umsetzbare Erkenntnisse. Diese Funktion integriert Namespace Insights und einen verbesserten Query Profiler in einer neuen dynamischen Benutzeroberfläche und trägt dazu bei, die Leistung der Datenbank zu steigern, indem sie die Diagnose optimiert und die Fehlerbehebungszeiten reduziert. Die neu hinzugefügten Namespace Insights bieten Anwendern Latenzstatistiken auf Sammlungsebene und einen umfassenden Überblick darüber, wie sich die heißesten Sammlungen in einem Cluster im Laufe der Zeit verhalten. Damit können Entwickler die Frage beantworten: „Wer oder was verursacht das Problem?“ Dies ist wichtig, um Leistungstrends zu erkennen und Abfrageoptimierungen zu priorisieren. Der verbesserte Cluster-zentrierte Query Profiler bietet einen umfassenderen Überblick über langsame und ineffiziente Abfragen über einen größeren Zeitraum. Ein Gesamtüberblick über die Daten des gesamten Clusters ermöglicht eine einfachere Navigation zwischen den Knoten und einen längeren Rückblick, um Trends zu erkennen. Dadurch verringert sich die Zeit für die Fehlersuche, was die Produktivität der Entwickler erhöht und die Gesamtleistung der Datenbank verbessert. Die wichtigsten Vorteile von Query Insights Query Insights bietet Nutzern von MongoDB Atlas mehrere neue Vorteile, darunter: Granulare Telemetrie: Schnellere Identifizierung und Lösung von Datenbankproblemen mit Latenzstatistiken auf Namespace-Ebene Verbesserte Beobachtbarkeit: Es ist einfacher, Leistungstrends zu erkennen, Ursachen zu identifizieren und Anwendungen zu debuggen. Gesteigerte Produktivität: Geringere Zeit für die Fehlersuche dank eines umfassenderen Überblicks über langsame Vorgänge Probieren Sie es aus! Die Seite „Query Insights“ bietet detailliertere Einblicke in die Datenbankleistung, indem sie Details auf Collection- und Vorgangsebene bereitstellt. Die Seite > „Namespace Insights“ bietet Metriken für die 20 wichtigsten Collections nach Gesamtlatenz. Bewegen Sie den Mauszeiger über die Diagramme, um zu sehen, wie sich die Collections im Zeitverlauf im Verhältnis zueinander entwickeln. Diese Informationen erleichtern die Beantwortung der Frage: „Wer/was verursacht das Problem?“ Verwenden Sie den Query Profiler, um bestimmte langsame Vorgänge anzuzeigen. Klicken Sie auf einen Punkt im Streudiagramm, um zusätzliche Metadaten zu jedem langsamen Vorgang anzuzeigen. Klicken Sie auf „Weitere Details anzeigen“, um weitere Metriken und Metadaten zu jedem langsamen Vorgang anzuzeigen, einschließlich des App-Namens, des Vorgangs, der Planübersicht, der Ausführungsstatistiken usw. Befähigen Sie Benutzer zu Höchstleistungen Die Einführung von Query Insights in MongoDB Atlas unterstreicht das Engagement von MongoDB, die Beobachtungsfunktionen unserer Plattform zu verbessern. Indem MongoDB den Benutzern die notwendigen Tools und Einblicke für eine optimale Datenbankleistung bietet, ermöglicht es Entwicklern, weniger Zeit mit der Fehlerbehebung und mehr Zeit mit der Erstellung zu verbringen. Dies senkt die Gesamtbetriebskosten und maximiert die Effizienz, was den Arbeitsabläufen unserer Benutzer einen erheblichen Mehrwert verleiht. Registrieren Sie sich für MongoDB Atlas , unseren Cloud-Datenbankdienst, um Query Insights in Aktion zu sehen. Weitere Informationen finden Sie unter „ Abfrageleistung überwachen “.

May 2, 2024

Boosting Performance and Insights with MongoDB Atlas and New Relic

In order to keep up with the demands of the modern business landscape, organizations must prioritize monitoring and optimizing application performance. Today, we're excited to announce a powerful collaboration between MongoDB Atlas, the leading database-as-a-service platform, and New Relic , the renowned monitoring and observability solution. This integration enables users to seamlessly monitor, analyze, and optimize their MongoDB deployments with efficiency and ease. Observability to ensure availability and uptime Monitoring a MongoDB Atlas deployment is now simpler than ever with the integration of New Relic. By connecting the two platforms, users can effortlessly monitor the performance of their MongoDB metrics, such as latency, throughput, and error rates, directly within the New Relic user interface. With real-time visibility into the health and performance of their databases, developers, and operations teams can quickly identify potential bottlenecks and proactively address issues before they impact end-users. Similarly, administrators can get an immediate high-level view of the health and availability of their MongoDB databases. Intelligent alerting and notifications The combination of MongoDB Atlas and New Relic empowers users to set up intelligent alerts and notifications tailored to their specific business requirements. Leveraging New Relic's alerting capabilities, users can create custom alert policies based on performance metrics and query patterns. Whether it's a sudden increase in response times or an unexpected spike in query access patterns, teams can receive timely notifications via email, Slack, or other preferred channels, enabling them to take immediate action. Powerful dashboarding and reporting Users can also take advantage of comprehensive dashboarding and reporting capabilities. With customizable dashboards and rich visualizations, users can gain real-time insights into the performance of their MongoDB clusters. Additionally, New Relic's reporting tools enable teams to generate detailed reports on database performance, query analytics, and overall system health, empowering them to make data-driven decisions and track improvements over time. By combining the strengths of these two powerful platforms, users can now unlock a new level of control and efficiency in managing their MongoDB databases. From streamlined monitoring and analysis to improved troubleshooting and enhanced collaboration, this integration leads organizations to proactively optimize their applications, ensure scalability, and deliver exceptional user experiences. With MongoDB Atlas and New Relic working cohesively, businesses can stay ahead in today's rapidly evolving digital landscape, where performance and efficiency are key differentiators. If you’d like to see the MongoDB Atlas and New Relic integration in action, sign up for MongoDB Atlas , our cloud database service, and learn more about New Relic’s monitoring and observability capabilities .

August 24, 2023

Tag, You're It: Using MongoDB Labels to Drive DataDog Business Logic

MongoDB Atlas and DataDog work better together to enable you to take advantage of the automation, elasticity, and scalability of modern infrastructure and act on real-time information to make well-informed decisions. With the latest release of MongoDB’s DataDog integration, we’ve added the ability to send custom defined labels in Atlas, CM, and OM to tags on the DataDog metrics object. Applying tags to DataDog's metrics allows users to organize and categorize their metrics in various ways. Here's how the new DataDog metrics tagging works: Define key-value labels in MongoDB at the cluster level that get automatically sent to DataDog as metrics tags. You can define tags based on the attributes you want to track and then assign those tags to the relevant metrics. For example, a tag named "region" could be assigned to metrics representing servers in different geographic regions. Filter and group metrics in DataDog by tags. You can then use these tags to filter, group, and aggregate metrics in various ways. For example, you can group metrics by tags such as "application," "environment," or "owner" to gain insights into how different parts of your infrastructure are performing. You can also filter metrics by tags to view just the metrics you're interested in. Use tags to set alerts and dashboards. You can create alerts and dashboards in DataDog based on tags. This allows you to monitor specific aspects of your infrastructure, such as servers in a particular region or metrics related to a specific application. DataDog's metric tagging feature is highly flexible and customizable, allowing you to adapt it to your specific organizational needs. Effectively using metrics tagging will grant you a better understanding of your application’s performance and help organizations make data-driven decisions. Read on to see an example of how MongoDB’s DataDog tagging integration can help organize your metrics and how you can use it to drive your business’ monitoring requirements. Setting cluster labels in Atlas In the example below, I’ll use MongoDB’s Data API to access and configure my MongoDB Atlas data. In this case, I’ll use MongoDB’s Data API to set new labels on my MongoDB Atlas clusters. To explore the new MongoDB Data API, you can use the public Postman workspace provided by the MongoDB developer relations team. You can use the cluster configuration API endpoint to add labels to a cluster in MongoDB. You can then use the get all clusters endpoint to verify that your labels were applied correctly. Once you’ve labeled your MongoDB clusters, set up your DataDog integration as you would normally. For more information on configuring MongoDB’s DataDog integration, refer to the documentation here . Using DataDogs metrics tagging to drive business logic After setting up your DataDog integration, you’ll automatically start seeing the labels you previously defined in MongoDB show up as tags on your DataDog metrics. You can now use these tags to filter, organize, and define logic based on the needs of your business. As an example, you can filter results in the DataDog Metrics Explorer. If I only want to see metrics for clusters associated with the “leafy” application, I can use tags to filter the metrics I get back. You can also use tags to define custom logic for your DataDog monitors. In this example, I’m configuring monitors to trigger different priority alerts based on the metrics tags. When query targeting exceeds the threshold for production clusters, I’ll get a P2 alert. However, the same alert for non-production environments wouldn’t have the same priority. In this example, I can use the “usage” metrics tag to define different alerting priorities. And finally, Datadog metrics tagging can help you organize and filter data in dashboards. Metrics tagging enables you to easily group related data together and create more focused and specific dashboards. For example, you can use the app_name tag here to filter on just the leafy application. This will help you quickly identify and troubleshoot issues. Using tags effectively can grant deeper insights into your data and help your organization make more informed decisions to improve the performance and availability of your applications and infrastructure. This new enhancement to MongoDB’s DataDog integration provides significantly more flexibility in how you use DataDog and helps you get the most out of your investment. The DataDog integration is available on MongoDB Atlas on M10 cluster tiers and higher. Learn more about DataDog’s powerful tagging capabilities. If you’d like to see MongoDB’s DataDog integration in action, the easiest way to get started is to sign up for MongoDB Atlas , our cloud database service.

May 1, 2023

Optimizing Your MongoDB Deployment with Performance Advisor

We are happy to announce additional enhancements to MongoDB’s Performance Advisor, now available in MongoDB Atlas , MongoDB Cloud Manager , and MongoDB Ops Manager . MongoDB’s Performance Advisor automatically analyzes logs for slow-running queries and provides index suggestions to improve query performance. In this latest update, we’ve made some key updates, including: A new ranking algorithm and additional performance statistics (e.g., average documents scanned, average documents returned, and average object size) make it easier to understand the relative importance of each index recommendation. Support for additional query types including regexes, negation operators (e.g., $ne, $nin, $not), $count, $distinct, and $match to ensure we cover with optimized index suggestions. Index recommendations are now more deterministic so they are less impacted by time and provide more consistent query performance benefits. Before diving further into MongoDB’s Performance Advisor, let’s look at tools MongoDB provides out of the box to simplify database monitoring. Background Deploying your MongoDB cluster and getting your database running is a critical first step, but another important aspect of managing your database is ensuring that your database is performant and running efficiently. To make this easier for you, MongoDB offers several out-of-the-box monitoring tools , such as the Query Profiler, Performance Advisor, Real-Time Performance Panel, and Metrics Charts, to name a few. Suppose you notice that your database queries are running slower. The first place you might go is to the metrics charts to look at the “Opcounters” metrics to see whether you have more operations running. You might also look at the “Operation Execution Time” to see if your queries are taking longer to run. The “Query Targeting” metric shows the ratio of the number of documents scanned over the number of documents returned. This datapoint is a great measure of the overall efficiency of a query — the higher the ratio, the less efficient the query. These and other metrics can help you identify performance issues with your overall cluster, which you can then use as context to dive a level deeper and perform more targeted diagnostics of individual slow-running queries . MongoDB’s Performance Advisor takes this functionality a step further by automatically scanning your slowest queries and recommending indexes where appropriate to improve query performance. Getting started with Performance Advisor The Performance Advisor is a unique tool that automatically monitors MongoDB logs for slow-running queries and suggests indexes to improve query performance. Performance Advisor also helps improve both your read and write performance by intelligently recommending indexes to create and/or drop (Figure 1). These suggestions are ranked by the determined impact on your cluster. Performance Advisor is available on M10 and above clusters in MongoDB Atlas as well as in Cloud Manager and Ops Manager. Figure 1:  Performance Advisor can recommend indexes to create or drop. Performance Advisor will suggest which indexes to create, what queries will be affected by the index, and the expected improvements to query performance. All of these user interactions are available in the user interface directly within Performance Advisor, and indexes can be easily created with just a few clicks. Figure 2 shows additional Performance Advisor statistics about the performance improvements this index would provide. The performance statistics that are highlighted for each index recommendation include: Execution Count: The number of queries per hour that would be covered by the recommended index Avg Execution Time: The average execution time of queries that would be covered by the recommended index Avg Query Targeting: The inefficiency of queries that would be covered by the recommended index, measured by the number of documents or index keys scanned in order to return one document In Memory Sort: The number of in-memory sorts performed per hour for queries that would be covered by the recommended index Avg Docs Scanned: The average number of documents that were scanned by slow queries with this query shape Avg Docs Returned: The average number of documents that were returned by slow queries with this query shape Avg Object Size: The average object size of all objects in the impacted collection If you have multiple index recommendations, they are ranked by their relative impact to query performance so that the most beneficial index suggestion is displayed at the top. This means that the most impactful index is displayed at the top and would be the most beneficial to query performance. Figure 2:  Detailed performance statistics. Creating optimal indexes ensures that queries are not scanning more documents than they return. However, creating too many indexes can slow down write performance, as each write operation needs to check each index before writing. Performance Advisor provides suggestions on which indexes to drop based on whether they are unused or redundant (Figure 3). Users also have the option to “hide” indexes as a way to evaluate the impact of dropping an index without actually dropping the index. Figure 3: Performance Advisor shows which indexes are unused or redundant. The Performance Advisor in MongoDB provides a simple and cost-efficient way to ensure you’re getting the best performance out of your MongoDB database. If you’d like to see the Performance Advisor in action, the easiest way to get started is to sign up for MongoDB Atlas , our cloud database service. Performance Advisor is available on MongoDB Atlas on M10 cluster tiers and higher. Learn more from the following resources: Monitor and Improve Slow Queries Monitor Your Database Deployments

November 22, 2022