Darshana Paithankar

5 results

Improved Developer Experience with the Atlas Admin API

With MongoDB Atlas, we meet our developers where they are and offer multiple ways to get started and work with Atlas. One of the ways to get started programmatically with Atlas is through the Atlas Administration API. It provides programmatic access to Atlas resources such as clusters, database users, or backups to name a few, enabling developers to perform operational tasks like creating, modifying, and deleting resources. We are excited to announce two key capabilities that will improve the developer experience when working with the Atlas Administration API. Versioned Atlas Administration API If you use the Atlas Administration API today, you are working with the unversioned Administration API (/v1). We have heard your feedback on the challenges around the API changes not having a clear policy as well as communication gaps about the new features/ deprecations. To address this, we are excited to now introduce resource-level versioning with our new versioned Atlas Administration API ( /v2). Here is what you can expect: More predictability and consistency in handling API changes: With this new versioning, any breaking changes that can impact your code will only be introduced in a new resource version. You can rest assured that no breaking changes will affect your production code running the current, stable version. Also, deprecation will occur with the introduction of a new stable API resource version. This will give you at least 1 year to upgrade before the removal of the deprecated resource version. It adds more predictability to what’s coming to the API. Minimum impact with resource-based versioning: With the resource level versioning, whenever we talk about API versions we’re referring to the actual API resource versions represented by date. So once you migrate from the current unversioned Administration API (/v1) to the new versioned Administration API (/v2), this will point to version 2023-02-01. To make the initial migration process smooth and easy this first resource version applies to all API resources (e.g. /serverless, /backup, /clusters, etc.). However, moving forward, each resource can introduce a new version (e.g. /serverless can move to 2023-06-01, /backup can stay on 2023-02-01) independently from each other at various points in time. The advantage is that if you have not implemented the e.g. /serverless resource and say a new version is introduced, you will not need to take any action. You will only need to take action if and when the resources you are utilizing are deprecated. More time to plan your migration: Once a particular resource version is deprecated, there will be enough time ( 12 months) before it is removed, so this will give you ample time to plan and transition to the new version. Improved context and visibility: Our updated documentation has all the details to guide you through the versioning process. Whether it’s a release of a new endpoint, deprecation of an existing resource version, or a non-breaking change to a #stable resource - all of them are now tracked on a dedicated and automatically updated Changelog . Other than that we provide more visibility and context on any API changes through the API specification which presents information for all stable and deprecated resource versions enabling you to access documentation that’s relevant for your particular case. We have made it very simple for you to get started with the new versioned Administration API (/v2). To start using it you need to migrate from the current Unversioned Administration API (/v1) to the new Versioned Administration API (/v2). This migration can be done smoothly by making two changes in your code: Update the path of each endpoint from /v1 to /v2 . Add a version header to each endpoint: application/vnd.atlas.2023-02-01+json. The 2023-02-01 version will have a long support timeframe of 2 years from its deprecation, giving you ample time to transition. Read more about the versioned Admin API. To learn more about the transition process, read our migration guide . Go SDK for the Atlas Administration API One of the mechanisms that simplifies interaction with APIs is the availability of SDKs. To make it easy to get started and work with the Versioned Administration API, we are excited to introduce the new Go SDK for the Administration API. If you are a Go developer and have interacted with the Atlas Administration API, you must be familiar with our current Go client. We are now introducing the new Go SDK for the Atlas Admin API. This provides a significantly improved developer experience for Go developers as it supports full endpoint coverage, improves the speed of getting started with the versioned Admin API, provides you a consistent experience when working with the Admin API, and gives you the choice of version for better control of changes and the impact on the scripts. Let’s look at some of the benefits you can expect: Full Atlas Administration API endpoint coverage: The new Go SDK allows you to access all the features and capabilities that the Atlas Administration API offers today with full endpoint coverage. This ensures you can programmatically leverage the full breadth of the developer data platform. Flexibility in choosing the API resource version: When interacting with the new versioned Atlas Administration API through the Go SDK client, you can choose a particular version of the Admin API, giving you control over when you are impacted by breaking changes or always work with the latest version. Ease of use: Your getting started experience for Admin API through the Go SDK client is now much more simplified with fewer lines of code since it includes pre-built functions, structs, and methods that encapsulate the complexity of HTTP requests, authentication, error handling, versioning, and other low-level details. Immediate access to updates: When using the new Go SDK, you can immediately access any newly released Atlas Admin API capabilities. And every time a new version of Atlas is released, the SDK will be quickly updated and continuously maintained, ensuring compatibility with any changes in the API. Get started today with the GoSDK client. Also, refer to our migration guide to learn more.

June 15, 2023

MongoDB Atlas Integrations for CDKTF are now Generally Available

Infrastructure as Code (IaC) tools allows developers to manage and provision infrastructure resources through code, rather than through manual configuration. IaC have empowered developers to apply similar best practices from software development to application instructure deployments. This includes: Automation - helping to ensure repeatable, consistent, and reliable infrastructure deployments Version Control - check in IaC code into GitHub, BitBucket, or GitLab for improved team collaboration and higher code quality Security - create clear audit trails of each infrastructure modification Disaster Recovery - IaC scripts can be used to quickly recreate infrastructure in the event of availability zone or region outages Cost Savings - prevent overprovisioning and waste of cloud resources Improved Compliance - easier to enforce organizational policies and standards Today we are doubling down on this commitment and announcing MongoDB Atlas integrations with CDKTF (Cloud Development Kit for Terraform). These new integrations are built on top of the Atlas Admin API and allow users to automate infrastructure deployments by making it easy to provision, manage, and control Atlas infrastructure as code in the cloud without first having to create in HCL or YAML configuration scripts. CDKTF abstracts away the low-level details of cloud infrastructure, making it easier for developers to define and manage their infrastructure natively in their programming language of choice. Under the hood, CDKTF is converted into Terraform config files on your behalf. This helps to simplify the deployment process and eliminates context switching. MongoDB Atlas & HashiCorp Terraform: MongoDB began this journey with our partners at HashiCorp when we launched the HashiCorp Terraform MongoDB Atlas Provider in 2019. We then have since grown to 10M+ downloads over all time and our provider is the number one provider in the database category. Today we are delighted to support all CDKTF supported languages including JavaScript, TypeScript, Python, Java , Go, and .NET. In addition, with CDKTF users are free to deploy their MongoDB Atlas resources to AWS, Azure and Google Cloud enabling true multi-cloud deployments. Learn how to get started via this quick demo . Start building today! MongDB Atlas CDKTF integrations are free and open source licensed under Mozilla Public License 2.0 . Users only pay for underlying Atlas resources created and can get started with Atlas always free tier ( M0 clusters ). Getting started today is faster than ever with MongoDB Atlas and CDK for HashiCorp Terraform . We can’t wait to see what you will build next with this powerful combination! Learn more about MongoDB Atlas and CDK for Hashicorp Terraform

February 28, 2023

MongoDB Atlas Integrations for AWS CloudFormation and CDK are now Generally Available

Infrastructure as Code (IaC) tools allows developers to manage and provision infrastructure resources through code, rather than through manual configuration. IaC have empowered developers to apply similar best practices from software development to application instructure deployments. This includes: Automation - helping to ensure repeatable, consistent, and reliable infrastructure deployments Version Control - check in IaC code into GitHub, BitBucket, AWS CodeCommit, or GitLab for improved team collaboration and higher code quality Security - create clear audit trails of each infrastructure modification Disaster Recovery - IaC scripts can be used to quickly recreate infrastructure in the event of availability zone or region outages Cost Savings - prevent overprovisioning and waste of cloud resources Improved Compliance - easier to enforce organizational policies and standards Today we are doubling down on this commitment and announcing MongoDB Atlas integrations with AWS CloudFormation and Cloud Development Kit (CDK). AWS CloudFormation allows customers to define and provision infrastructure resources using JSON or YAML templates. CloudFormation provides a simple way to manage infrastructure as code and automate the deployment of resources. AWS Cloud Development Kit (CDK) is an open-source software development framework that allows customers to define cloud infrastructure in code and provision it through AWS CloudFormation. It supports multiple programming languages and allows customers to use high-level abstractions to define infrastructure resources. These new integrations are built on top of the Atlas Admin API and allow users to automate infrastructure deployments by making it easy to provision, manage, and control Atlas Infrastructure as Code in the cloud. MongoDB Atlas & AWS CloudFormation: To meet developers where they are, we now have multiple ways to get started with MongoDB Atlas using AWS Infrastructure as Code. Each of these allow users to provision, manage, and control Atlas infrastructure as code on AWS: Option 1: AWS CloudFormation Customers can begin their journey using Atlas resources directly from the AWS CloudFormation Public Registry . We currently have 33 Atlas Resources and will continue adding more. Examples of available Atlas resources today include: Dedicated Clusters, Serverless Instances, AWS PrivateLink , Cloud Backups, and Encryption at Rest using Customer Key Management. In addition, we have published these resources to 22 (and counting) AWS Regions where MongoDB Atlas is supported today. Learn how to get started via this quick demo . Option 2: AWS CDK After its launch in 2019 as an open source project, AWS CDK has gained immense popularity among the developer community with over a thousand external contributors and more than 1.3 million weekly downloads. AWS CDK abstracts away the low-level details of cloud infrastructure, making it easier for developers to define and manage their infrastructure natively in their programming language of choice. This helps to simplify the deployment process and eliminates context switching. Under the hood, AWS CDK synthesizes CloudFormation templates on your behalf which is then deployed to AWS accounts. In AWS CDK, L1 (Level 1) and L2 (Level 2) constructs refer to two different levels of abstraction for defining infrastructure resources: L1 constructs are lower-level abstractions that provide a one-to-one mapping to AWS CloudFormation resources. They are essentially AWS CloudFormation resources wrapped in code, making them easier to use in a programming context. L2 constructs are higher-level abstractions that provide a more user-friendly and intuitive way to define AWS infrastructure. They are built on top of L1 constructs and provide a simpler and more declarative API for defining resources. Today we announce MongoDB Atlas availability for AWS CDK in JavaScript and TypeScript, with plans for Python, Java, Go, and .NET support coming later in 2023. Now customers can easily deploy and manage all available Atlas resources by vending AWS CDK applications with prebuilt L1 Constructs. We also have a growing number of L2 and L3 CDK Constructs available. These include Constructs to help users to quickly deploy the core resources they need to get started with MongoDB Atlas on AWS in just a few lines JavaScript or TypeScript (see awscdk-resources-mongodbatlas to learn more). Users can also optionally select to add more advanced networking configurations such as VPC peering and AWS PrivateLink. Option 3: AWS Partner Solutions (previously AWS Quick Starts) Instead of manually pulling together multiple Atlas CloudFormation resources, AWS Partner Solutions gives customers access to pre-built CloudFormation templates for both general and specific use cases with MongoDB Atlas. By using AWS Partner Solution templates, customers can save time and effort compared to architecting their deployments from scratch. These were jointly created and incorporate best practices from MongoDB Atlas and AWS. Go to the AWS Partner Solutions Portal to get started. Start building today! These MongDB Atlas integrations with AWS CloudFormation are free and open source licensed under Apache License 2.0 . Users only pay for underlying Atlas resources created and can get started with Atlas always free tier ( M0 clusters ). Getting started today is faster than ever with MongoDB Atlas and AWS CloudFormation. We can’t wait to see what you will build next with this powerful combination! Learn more about MongoDB Atlas integrations with AWS CloudFormation

February 28, 2023

Optimizing Your MongoDB Deployment with Performance Advisor

We are happy to announce additional enhancements to MongoDB’s Performance Advisor, now available in MongoDB Atlas , MongoDB Cloud Manager , and MongoDB Ops Manager . MongoDB’s Performance Advisor automatically analyzes logs for slow-running queries and provides index suggestions to improve query performance. In this latest update, we’ve made some key updates, including: A new ranking algorithm and additional performance statistics (e.g., average documents scanned, average documents returned, and average object size) make it easier to understand the relative importance of each index recommendation. Support for additional query types including regexes, negation operators (e.g., $ne, $nin, $not), $count, $distinct, and $match to ensure we cover with optimized index suggestions. Index recommendations are now more deterministic so they are less impacted by time and provide more consistent query performance benefits. Before diving further into MongoDB’s Performance Advisor, let’s look at tools MongoDB provides out of the box to simplify database monitoring. Background Deploying your MongoDB cluster and getting your database running is a critical first step, but another important aspect of managing your database is ensuring that your database is performant and running efficiently. To make this easier for you, MongoDB offers several out-of-the-box monitoring tools , such as the Query Profiler, Performance Advisor, Real-Time Performance Panel, and Metrics Charts, to name a few. Suppose you notice that your database queries are running slower. The first place you might go is to the metrics charts to look at the “Opcounters” metrics to see whether you have more operations running. You might also look at the “Operation Execution Time” to see if your queries are taking longer to run. The “Query Targeting” metric shows the ratio of the number of documents scanned over the number of documents returned. This datapoint is a great measure of the overall efficiency of a query — the higher the ratio, the less efficient the query. These and other metrics can help you identify performance issues with your overall cluster, which you can then use as context to dive a level deeper and perform more targeted diagnostics of individual slow-running queries . MongoDB’s Performance Advisor takes this functionality a step further by automatically scanning your slowest queries and recommending indexes where appropriate to improve query performance. Getting started with Performance Advisor The Performance Advisor is a unique tool that automatically monitors MongoDB logs for slow-running queries and suggests indexes to improve query performance. Performance Advisor also helps improve both your read and write performance by intelligently recommending indexes to create and/or drop (Figure 1). These suggestions are ranked by the determined impact on your cluster. Performance Advisor is available on M10 and above clusters in MongoDB Atlas as well as in Cloud Manager and Ops Manager. Figure 1:  Performance Advisor can recommend indexes to create or drop. Performance Advisor will suggest which indexes to create, what queries will be affected by the index, and the expected improvements to query performance. All of these user interactions are available in the user interface directly within Performance Advisor, and indexes can be easily created with just a few clicks. Figure 2 shows additional Performance Advisor statistics about the performance improvements this index would provide. The performance statistics that are highlighted for each index recommendation include: Execution Count: The number of queries per hour that would be covered by the recommended index Avg Execution Time: The average execution time of queries that would be covered by the recommended index Avg Query Targeting: The inefficiency of queries that would be covered by the recommended index, measured by the number of documents or index keys scanned in order to return one document In Memory Sort: The number of in-memory sorts performed per hour for queries that would be covered by the recommended index Avg Docs Scanned: The average number of documents that were scanned by slow queries with this query shape Avg Docs Returned: The average number of documents that were returned by slow queries with this query shape Avg Object Size: The average object size of all objects in the impacted collection If you have multiple index recommendations, they are ranked by their relative impact to query performance so that the most beneficial index suggestion is displayed at the top. This means that the most impactful index is displayed at the top and would be the most beneficial to query performance. Figure 2:  Detailed performance statistics. Creating optimal indexes ensures that queries are not scanning more documents than they return. However, creating too many indexes can slow down write performance, as each write operation needs to check each index before writing. Performance Advisor provides suggestions on which indexes to drop based on whether they are unused or redundant (Figure 3). Users also have the option to “hide” indexes as a way to evaluate the impact of dropping an index without actually dropping the index. Figure 3: Performance Advisor shows which indexes are unused or redundant. The Performance Advisor in MongoDB provides a simple and cost-efficient way to ensure you’re getting the best performance out of your MongoDB database. If you’d like to see the Performance Advisor in action, the easiest way to get started is to sign up for MongoDB Atlas , our cloud database service. Performance Advisor is available on MongoDB Atlas on M10 cluster tiers and higher. Learn more from the following resources: Monitor and Improve Slow Queries Monitor Your Database Deployments

November 22, 2022

Enhancing Atlas Online Archive With Data Expiration and Scheduled Archiving

Atlas's Online Archive feature allows you to set archiving rules to move data that is not frequently accessed from your Atlas cluster to a MongoDB-managed object store. It also allows you to query both your Atlas and Online Archive data in a unified manner without having to worry about the tier in which the data resides. We are enhancing this feature by adding two new capabilities: data expiration and scheduled archiving (in preview). Data expiration: Online Archive makes it easy to tier data out of a live database into an object store, but what if you want to set a second threshold to delete data from the archive entirely? Perhaps you don’t want to store data indefinitely due to costs, or maybe you have a compliance requirement for data expiration that means you need to ensure deletion on a schedule. Previously, there was no option to remove data from the archive except deleting the archive completely, which is not a preferred option for most use cases. With our new data expiration feature, you can specify for how many days data should be stored in the online archive before being deleted. You can set an expiration from the archive as low as seven days and as high as 9,125 days; you can set the archive expiration time through either the Atlas UI or the Admin API. Expiration rules can be edited after creation, if needed. Note that once the data is deleted from the archive there is no way to recover it, so you must define your rules carefully. Archiving with the data expiration feature Scheduled archiving: Previously, the archiving process ran every five minutes. Though in most cases this is acceptable, some customers were concerned that this process could affect cluster performance when, for example, a cluster is running close to capacity during a specific time period. If an archiving window overlaps with this period, it may overload the cluster and lead to stability issues. These customers requested the ability to schedule archiving during an off-peak time, when the clusters have spare capacity. With this requirement in mind, we are thrilled to introduce the scheduled archiving feature. You can configure the scheduled window by setting rules. The window can be scheduled to repeat every day, every week, or every month, depending on your preference. To ensure that the archive process is able to work through any backlog that’s accrued, there is a minimum window requirement of two hours. A scheduled archiving window set to repeat every week You are also able to edit the archive rule and define when you want to archive your data and when you want to delete it. Data expiration and scheduled archiving will provide operational efficiency to Atlas customers. Both are in preview mode and will be generally available soon. See the documentation for additional information about data expiration and scheduled archiving .

June 7, 2022