This version of the documentation is archived and no longer supported.

BSON Types

BSON is a binary serialization format used to store documents and make remote procedure calls in MongoDB. The BSON specification is located at

BSON supports the following data types as values in documents. Each data type has a corresponding number that can be used with the $type operator to query documents by BSON type.

Type Number Notes
Double 1  
String 2  
Object 3  
Array 4  
Binary data 5  
Undefined 6 Deprecated.
Object id 7  
Boolean 8  
Date 9  
Null 10  
Regular Expression 11  
JavaScript 13  
Symbol 14 Deprecated.
JavaScript (with scope) 15  
32-bit integer 16  
Timestamp 17  
64-bit integer 18  
Min key 255 Query with -1.
Max key 127  

To determine a field’s type, see Check Types in the mongo Shell.

If you convert BSON to JSON, see the Extended JSON reference.

Comparison/Sort Order

When comparing values of different BSON types, MongoDB uses the following comparison order, from lowest to highest:

  1. MinKey (internal type)
  2. Null
  3. Numbers (ints, longs, doubles)
  4. Symbol, String
  5. Object
  6. Array
  7. BinData
  8. ObjectId
  9. Boolean
  10. Date
  11. Timestamp
  12. Regular Expression
  13. MaxKey (internal type)

MongoDB treats some types as equivalent for comparison purposes. For instance, numeric types undergo conversion before comparison.

Changed in version 3.0.0: Date objects sort before Timestamp objects. Previously Date and Timestamp objects sorted together.

The comparison treats a non-existent field as it would an empty BSON Object. As such, a sort on the a field in documents { } and { a: null } would treat the documents as equivalent in sort order.

With arrays, a less-than comparison or an ascending sort compares the smallest element of arrays, and a greater-than comparison or a descending sort compares the largest element of the arrays. As such, when comparing a field whose value is a single-element array (e.g. [ 1 ]) with non-array fields (e.g. 2), the comparison is between 1 and 2. A comparison of an empty array (e.g. [ ]) treats the empty array as less than null or a missing field.

MongoDB sorts BinData in the following order:

  1. First, the length or size of the data.
  2. Then, by the BSON one-byte subtype.
  3. Finally, by the data, performing a byte-by-byte comparison.

The following sections describe special considerations for particular BSON types.


ObjectIds are small, likely unique, fast to generate, and ordered. ObjectId values consists of 12-bytes, where the first four bytes are a timestamp that reflect the ObjectId’s creation, specifically:

  • a 4-byte value representing the seconds since the Unix epoch,
  • a 3-byte machine identifier,
  • a 2-byte process id, and
  • a 3-byte counter, starting with a random value.

In MongoDB, documents stored in a collection require a unique _id field that acts as a primary key. If the _id field is unspecified in documents, MongoDB uses ObjectIds as the default value for the _id field; i.e. if a document does not contain a top-level _id field, the MongoDB driver adds the _id field that holds an ObjectId.

In addition, if the mongod receives a document to insert that does not contain an _id field, mongod will add the _id field that holds an ObjectId.

MongoDB clients should add an _id field with a unique ObjectId. Using ObjectIds for the _id field provides the following additional benefits:

  • in the mongo shell, you can access the creation time of the ObjectId, using the ObjectId.getTimestamp() method.

  • sorting on an _id field that stores ObjectId values is roughly equivalent to sorting by creation time.


    The relationship between the order of ObjectId values and generation time is not strict within a single second. If multiple systems, or multiple processes or threads on a single system generate values, within a single second; ObjectId values do not represent a strict insertion order. Clock skew between clients can also result in non-strict ordering even for values because client drivers generate ObjectId values.

See also



BSON strings are UTF-8. In general, drivers for each programming language convert from the language’s string format to UTF-8 when serializing and deserializing BSON. This makes it possible to store most international characters in BSON strings with ease. [1] In addition, MongoDB $regex queries support UTF-8 in the regex string.

[1]Given strings using UTF-8 character sets, using sort() on strings will be reasonably correct. However, because internally sort() uses the C++ strcmp api, the sort order may handle some characters incorrectly.


BSON has a special timestamp type for internal MongoDB use and is not associated with the regular Date type. Timestamp values are a 64 bit value where:

  • the first 32 bits are a time_t value (seconds since the Unix epoch)
  • the second 32 bits are an incrementing ordinal for operations within a given second.

Within a single mongod instance, timestamp values are always unique.

In replication, the oplog has a ts field. The values in this field reflect the operation time, which uses a BSON timestamp value.


The BSON timestamp type is for internal MongoDB use. For most cases, in application development, you will want to use the BSON date type. See Date for more information.

If you insert a document containing an empty BSON timestamp in a top-level field, the MongoDB server will replace that empty timestamp with the current timestamp value. For example, if you create an insert a document with a timestamp value, as in the following operation:

var a = new Timestamp();

db.test.insert( { ts: a } );

Then, the db.test.find() operation will return a document that resembles the following:

{ "_id" : ObjectId("542c2b97bac0595474108b48"), "ts" : Timestamp(1412180887, 1) }

If ts were a field in an embedded document, the server would have left it as an empty timestamp value.

Changed in version 2.6: Previously, the server would only replace empty timestamp values in the first two fields, including _id, of an inserted document. Now MongoDB will replace any top-level field.


BSON Date is a 64-bit integer that represents the number of milliseconds since the Unix epoch (Jan 1, 1970). This results in a representable date range of about 290 million years into the past and future.

The official BSON specification refers to the BSON Date type as the UTC datetime.

BSON Date type is signed. [2] Negative values represent dates before 1970.


Construct a Date using the new Date() constructor in the mongo shell:

var mydate1 = new Date()


Construct a Date using the ISODate() constructor in the mongo shell:

var mydate2 = ISODate()


Return the Date value as string:



Return the month portion of the Date value; months are zero-indexed, so that January is month 0:

[2]Prior to version 2.0, Date values were incorrectly interpreted as unsigned integers, which affected sorts, range queries, and indexes on Date fields. Because indexes are not recreated when upgrading, please re-index if you created an index on Date values with an earlier version, and dates before 1970 are relevant to your application.