EventGet 50% off your ticket to MongoDB.local London on October 2. Use code WEB50Learn more >>
MongoDB Developer
Python
plus
Sign in to follow topics
MongoDB Developer Centerchevron-right
Developer Topicschevron-right
Languageschevron-right
Pythonchevron-right

Building AI Services with FastAPI & Bedrock

58 min • Published Aug 15, 2024
AWSFastApiIndexesPython
Facebook Icontwitter iconlinkedin icon
Rate this video
star-empty
star-empty
star-empty
star-empty
star-empty
✅ MongoDB Atlas account → https://mdb.link/KL8CAm6Eoks-register ✅ Get help on our Community Forums → https://mdb.link/KL8CAm6Eoks-forums ✅ Writen article → https://mdb.link/KL8CAm6Eoks-article - We'll go through a FARM (FastAPI, React & MongoDB) stack application that I built that does multi-modal search to find images using MongoDB's vector search indexes. I'll talk about some of the tricky things in the implementation, and how to work with Bedrock from asyncio applications.
All MongoDB Videos

Facebook Icontwitter iconlinkedin icon
Rate this video
star-empty
star-empty
star-empty
star-empty
star-empty
Related
Tutorial

Testing and Packaging a Python Library


Aug 14, 2024 | 8 min read
Tutorial

Building Generative AI Applications Using MongoDB: Harnessing the Power of Atlas Vector Search and Open Source Models


Jan 12, 2024 | 10 min read
Quickstart

Quickstart Guide to RAG Application Using LangChain and LlamaIndex


Aug 01, 2024 | 10 min read
Tutorial

How to Implement Agentic RAG Using Claude 3.5 Sonnet, LlamaIndex, and MongoDB


Jul 02, 2024 | 17 min read