MongoDB Blog
Announcements, updates, news, and more
What’s New From MongoDB at AWS re:Invent 2024
As thousands of attendees make their way home after a week in Vegas—a week packed with learning, product launches, and round-the-clock events—we thought we’d reflect on the show’s highlights. MongoDB was excited to showcase our latest integrations and solutions with Amazon Web Services (AWS), which range from new ways to optimize generative AI, to faster, more cost-effective methods for modernizing applications. But first, we want to thank our friends at AWS for recognizing MongoDB as the AWS Technology Partner of the Year NAMER! This prestigious award recognizes AWS Technology Partners that are using AWS to lower costs, increase agility, and innovate faster. Announced during the re:Invent Partner Awards Gala, the Technology Partner of the Year Award is a testament to the specialization, innovation, and cooperation MongoDB and AWS have jointly brought to customers this year. In addition, MongoDB also received AWS Partner of the Year awards for Italy, Turkey, and Iberia. These awards follow wins in the ASEAN Global Software Partner of the Year and Taiwan Technology Partner of the Year categories earlier in the year, further demonstrating the global reach and popularity of the world’s most popular document database! Harnessing the potential of gen AI If 2024 (and 2023, and 2022…) was the year of gen AI excitement, then 2025 may turn out to be marked by realistic gen AI implementation. Indeed, we’ve seen customers shift their 2025 AI focus toward optimizing resource-intensive gen AI workloads to drive down costs—and to get the most out of this groundbreaking technology. Retrieval-augmented generation (RAG), one of the main ways companies use their data to customize the output of foundation models, has become the focus of this push for optimization. Customers are looking for easier ways to fine-tune their RAG systems, asking questions like, “How do I evaluate the efficiency and accuracy of my current RAG workflow?” To that end, AWS and MongoDB are introducing new services and technologies for enterprises to optimize RAG architecture compute costs, while also maintaining accuracy. First up is vector quantization. By reducing vector storage and memory requirements while preserving performance, these capabilities empower developers to build AI-enriched applications with more scale—and at a lower cost. Leading foundation models like Amazon Titan are already compatible with vector quantization, helping to maintain high accuracy of generated responses while simultaneously reducing costs. You can read more about vector quantization on our blog. As for RAG evaluation, AWS has launched a new feature for Amazon Bedrock called, naturally, RAG Evaluator. This tool allows Bedrock users to evaluate and monitor RAG Apps natively within the Bedrock environment, eliminating the need for third-party frameworks to run tests and comparisons. As a Knowledge Base for Amazon Bedrock, MongoDB Atlas is ready on day one to take advantage of Bedrock RAG Evaluator, allowing companies to gauge and compare the quality of their RAG Apps across different applications. The RAG Evaluator, built on several joint integrations and solutions AWS and MongoDB released in 2024, and vector quantization together can streamline the deployment of enterprise generative AI. For example, in October MongoDB, Anthropic, and AWS announced a joint solution to create a memory-enhanced AI agent . Together, the three partners offer enterprise-grade, trusted, secure technologies to build generative AI apps quickly and flexibly using a family of foundation models in a fully managed environment. Overall, MongoDB and AWS are making it easier—and more cost-effective—for developers to build innovative applications that harness the full potential of generative AI on AWS. From cars to startups to glue MongoDB and AWS have been hard at work on a number of other solutions for developers across industries. Here’s a quick roundup: AWS Amplify + AppSync + MongoDB For startups, or for any organization looking to quickly test and launch applications, speed is everything. That’s why MongoDB teamed up with AWS to create a full-stack solution that provides developers with the same high standards of performance and scalability they would demand for any app. By combining AWS Amplify, AWS AppSync, and MongoDB Atlas, AWS and MongoDB have created a full-stack solution that enables seamless front-end development, robust and scalable backend services, out-of-the-box CI/CD, and a flexible and powerful database solution, allowing developers to drastically reduce the coding time required to launch new applications. Check out this tutorial and repository for a starter template . Digital twins on AWS CMS For those in the automotive sector, MongoDB and AWS have developed a connected mobility solution to help remove the undifferentiated integration, or “technical plumbing” work, of connecting vehicles to the cloud. When used together, Connected Mobility Solution (CMS) on AWS and MongoDB Atlas help accelerate the development of next-generation digital twin use cases and applications, including connected car use cases. MongoDB’s document model allows easy and flexible modeling and storage of connected vehicle sensor data. Read our joint blog with AWS to learn how the MongoDB Atlas document model helps with data modeling of connected vehicles data and how this capability can be leveraged via AWS Automotive Cloud Developer Portal (ACDP). AWS Glue + MongoDB Atlas Speaking of undifferentiated plumbing, MongoDB Atlas is now integrated into AWS Glue’s visual interface. The new integration simplifies data integration between MongoDB Atlas and AWS, making it easy to build efficient ETL (Extract, Transform, Load) pipelines with minimal effort. With its visual interface, AWS Glue allows users to seamlessly transfer, transform, and load data to and from MongoDB Atlas without needing deep technical expertise in Spark or SQL. In this blog post , we look at how AWS Glue and MongoDB Atlas can transform the way you manage data movement. Buy with AWS In the spirit of making things easier for our joint customers, in early 2025 MongoDB will also join the AWS ‘Buy with AWS’ program. Once up and running, Buy With AWS will allow customers to pay for Atlas using their AWS account directly from the Atlas UI, further reducing friction for customers wanting to get started with Atlas on AWS. New Atlas Updates Announced at re:Invent Aside from our joint endeavors with AWS, MongoDB has also been hard at work on improving the core Atlas platform. Here’s an overview of what we announced: Asymmetrical sharding support for Terraform Atlas Provider Customers are constantly seeking ways to optimize costs to ensure they get the best value for their resources. With Asymmetrical Sharding, now available in the Terraform MongoDB Atlas Provider, MongoDB Atlas users can customize the Cluster Tier and IOPS for each shard, encouraging better resource allocation, improved operational efficiency, and cost savings as customer needs evolve. Atlas Flex Tier Our new Atlas Flex tier offers the scaled flexibility of serverless, with the cost-capped assurance of shared tier clusters. With Atlas Flex Tier, developers can build and scale applications cost-effectively without worrying about runaway bills or resource provisioning. New test bench feature in Query Converter At MongoDB, we firmly believe that the document model is the best way for customers to build applications with their data. In our latest update to Relational Migrator , we’ve introduced Generative AI to automatically convert SQL database objects and validate them using the test bench in a fraction of the time, producing deployment-ready code up to 90% faster. This streamlined approach reduces migration risks and manual development effort, enabling fast, efficient, and precise migrations to MongoDB. For more about MongoDB’s work with AWS—including recent announcements and the latest product updates—please visit the MongoDB Atlas on AWS page ! Visit our product page to learn more about MongoDB Atlas .
New Course for Building AI Applications with MongoDB on AWS
Developers everywhere want to expand the limits of what they can build with new generative AI technologies. But the AI market and its offerings have evolved so quickly that for many developers, keeping up can feel overwhelming. As we’ve entered the AI era, MongoDB and Amazon Web Services (AWS) have built upon our eight year partnership to deliver technology integrations—like MongoDB Atlas’s integrations with Amazon Bedrock and Amazon Q Developer (formerly CodeWhisperer)—that simplify the process of building and deploying gen AI applications. By combining MongoDB’s integrated operational and vector database capabilities with AWS’s AI infrastructure solutions, our goal is to make it easier for our developer community to innovate with AI. So, to help developers get started, we’re launching a new, free MongoDB Learning Badge focused on Building AI Applications with MongoDB on AWS . Building AI with MongoDB on AWS This is MongoDB University’s first AWS Learning Badge, and with it, we’ve focused on teaching developers how Amazon Bedrock and Atlas work together—including how to create a knowledge base in Amazon Bedrock, configure a knowledge base to use Atlas, inspect how a query is answered, create an Agent to answer questions based on data in Atlas, and configure guardrails that support responsible agentic behavior. In short, developers will learn how to remove the heavy lifting of infrastructure configuration and integration so they can get up and running with innovative new semantic search and RAG applications faster. Amazon Bedrock is a fully managed service from AWS that offers a choice of high-performing foundation models from leading AI companies via a single API, along with a broad set of capabilities organizations need to build secure, high-performing AI applications. Developers can connect Bedrock to MongoDB Atlas for blazing-fast vector searches and secure vector storage with minimal coding. With the integration, developers’ can use their proprietary data alongside industry-leading foundation models to launch AI applications that deliver hyper-intelligent and hyper-relevant results. Tens of thousands of customers are running MongoDB Atlas on AWS, and many have already embarked successfully on cutting-edge AI journeys. Take Scalestack for example, which used MongoDB Atlas Vector Search to build a RAG-powered AI copilot, named Spotlight, and is now using Bedrock’s customizable models to enhance Spotlight’s relevance and performance. Meanwhile, Base39 —a Brazilian fintech provider—used MongoDB Atlas and Amazon Bedrock to automate loan analysis, decreasing decision time from three days to one hour and reducing cost per loan analysis by 96%. Badge up with MongoDB MongoDB Learning Badges are a powerful way to demonstrate your dedication to continuous learning. These digital credentials not only validate your educational accomplishments but also stand as a testament to your expertise and skill. Whether you're a seasoned developer, an aspiring data scientist, or an enthusiastic student, earning a MongoDB badge can elevate your professional profile and unlock new opportunities in your field. Learn, prepare, and earn Complete the Learning Badge Path and pass a brief assessment to earn your badge. Upon completion, you'll receive an email with your official Credly badge and digital certificate, ready to share on social media, in email signatures, or on your resume. Additionally, you'll gain inclusion in the Credly Talent Directory, where you will be visible to recruiters from top employers. Millions of builders have been trained through MongoDB University courses—join them and get started building your AI future with MongoDB Atlas and AWS. And if you’re attending AWS re:Invent 2024, come find MongoDB at Booth #824. The first 100 people to receive their learning badge will receive a special gift! Start learning today
AI-Powered Call Centers: A New Era of Customer Service
Customer satisfaction is critical for insurance companies. Studies have shown that companies with superior customer experiences consistently outperform their peers. In fact, McKinsey found that life and property/casualty insurers with superior customer experiences saw a significant 20% and 65% increase in Total Shareholder Return , respectively, over five years. A satisfied customer is a loyal customer. They are 80% more likely to renew their policies, directly contributing to sustainable growth. However, one major challenge faced by many insurance companies is the inefficiency of their call centers. Agents often struggle to quickly locate and deliver accurate information to customers, leading to frustration and dissatisfaction. This article explores how Dataworkz and MongoDB can transform call center operations. By converting call recordings into searchable vectors (numerical representations of data points in a multi-dimensional space), businesses can quickly access relevant information and improve customer service. We'll dig into how the integration of Amazon Transcribe, Cohere, and MongoDB Atlas Vector Search—as well as Dataworkz's RAG-as-a-service platform— is achieving this transformation. From call recordings to vectors: A data-driven approach Customer service interactions are goldmines of valuable insights. By analyzing call recordings, we can identify successful resolution strategies and uncover frequently asked questions. In turn, by making this information—which is often buried in audio files— accessible to agents, they can give customers faster and more accurate assistance. However, the vast volume and unstructured nature of these audio files make it challenging to extract actionable information efficiently. To address this challenge, we propose a pipeline that leverages AI and analytics to transform raw audio recordings into vectors as shown in Figure 1: Storage of raw audio files: Past call recordings are stored in their original audio format Processing of the audio files with AI and analytics services (such as Amazon Transcribe Call Analytics ): speech-to-text conversion, summarization of content, and vectorization Storage of vectors and metadata: The generated vectors and associated metadata (e.g., call timestamps, agent information) are stored in an operational data store Figure 1: Customer service call insight extraction and vectorization flow Once the data is stored in vector format within the operational data store, it becomes accessible for real-time applications. This data can be consumed directly through vector search or integrated into a retrieval-augmented generation (RAG) architecture, a technique that combines the capabilities of large language models (LLMs) with external knowledge sources to generate more accurate and informative outputs. Introducing Dataworkz: Simplifying RAG implementation Building RAG pipelines can be cumbersome and time-consuming for developers who must learn yet another stack of technologies. Especially in this initial phase, where companies want to experiment and move fast, it is essential to leverage tools that allow us to abstract complexity and don’t require deep knowledge of each component in order to experiment with and realize the benefits of RAG quickly. Dataworkz offers a powerful and composable RAG-as-a-service platform that streamlines the process of building RAG applications for enterprises. To operationalize RAG effectively, organizations need to master five key capabilities: ETL for LLMs: Dataworkz connects with diverse data sources and formats, transforming the data to make it ready for consumption by generative AI applications. Indexing: The platform breaks down data into smaller chunks and creates embeddings that capture semantics, storing them in a vector database. Retrieval: Dataworkz ensures the retrieval of accurate information in response to user queries, a critical part of the RAG process. Synthesis: The retrieved information is then used to build the context for a foundational model, generating responses grounded in reality. Monitoring: With many moving parts in the RAG system, Dataworkz provides robust monitoring capabilities essential for production use cases. Dataworkz's intuitive point-and-click interface (as seen in Video 1) simplifies RAG implementation, allowing enterprises to quickly operationalize AI applications. The platform offers flexibility and choice in data connectors, embedding models, vector stores, and language models. Additionally, tools like A/B testing ensure the quality and reliability of generated responses. This combination of ease of use, optionality, and quality assurance is a key tenet of Dataworkz's "RAG as a Service" offering. Diving deeper: System architecture and functionalities Now that we’ve looked at the components of the pre-processing pipeline, let’s explore the proposed real-time system architecture in detail. It comprises the following modules and functions (see Figure 2): Amazon Transcribe , which receives the audio coming from the customer’s phone and converts it into text. Cohere ’s embedding model, served through Amazon Bedrock , vectorizes the text coming from Transcribe. MongoDB Atlas Vector Search receives the query vector and returns a document that contains the most semantically similar FAQ in the database. Figure 2: System architecture and modules Here are a couple of FAQs we used for the demo: Q: “Can you explain the different types of coverage available for my home insurance?” A: “Home insurance typically includes coverage for the structure of your home, your personal belongings, liability protection, and additional living expenses in case you need to temporarily relocate. I can provide more detailed information on each type if you'd like.” Q: “What is the process for adding a new driver to my auto insurance policy?" A: “To add a new driver to your auto insurance policy, I'll need some details about the driver, such as their name, date of birth, and driver's license number. We can add them to your policy over the phone, or you can do it through our online portal.” Note that the question is reported just for reference, and it’s not used for retrieval. The actual question is provided by the user through the voice interface and then matched in real-time with the answers in the database using Vector Search. This information is finally presented to the customer service operator in text form (see Fig. 3). The proposed architecture is simple but very powerful, easy to implement, and effective. Moreover, it can serve as a foundation for more advanced use cases that require complex interactions, such as agentic workflows , and iterative and multi-step processes that combine LLMs and hybrid search to complete sophisticated tasks. Figure 3: App interface, displaying what has been asked by the customer (left) and how the information is presented to the customer service operator (right) This solution not only impacts human operator workflows but can also underpin chatbots and voicebots, enabling them to provide more relevant and contextual customer responses. Building a better future for customer service By seamlessly integrating analytical and operational data streams, insurance companies can significantly enhance both operational efficiency and customer satisfaction. Our system empowers businesses to optimize staffing, accelerate inquiry resolution, and deliver superior customer service through data-driven, real-time insights. To embark on your own customer service transformation, explore our GitHub repository and take advantage of the Dataworkz free tier .
Better Digital Banking Experiences with AI and MongoDB
Interactive banking represents a new era in financial services where customers engage with digital platforms that anticipate, understand, and meet their needs in real-time. This approach encompasses AI-driven technologies such as chatbots, virtual assistants, and predictive analytics that allow banks to enhance digital self-service while delivering personalized, context-aware interactions. According to Accenture’s 2023 consumer banking study , 44% of consumers aged 18-44 reported difficulty accessing human support when needed, underscoring the demand for more responsive digital solutions that help bridge this gap between customers and financial services. Generative AI technologies like chatbots and virtual assistants can fill this need by instantly addressing inquiries, providing tailored financial advice, and anticipating future needs. This shift has tremendous growth potential; the global chatbot market is expected to grow at a CAGR of 23.3% from 2023 to 2030 , with the financial sector experiencing the fastest growth rate of 24.0%. This shift is more than just a convenience; it aims to create a smarter, more engaging, and intuitive banking journey for every user. Simplifying self-service banking with AI Navigating daily banking activities like transfers, payments, and withdrawals can often raise immediate questions for customers: “Can I overdraft my account?” “What will the penalties be?” or “How can I avoid these fees?” While the answers usually lie within the bank’s terms and conditions, these documents are often dense, complex, and overwhelming for the average user. At the same time, customers value their independence and want to handle their banking needs through self-service channels, but wading through extensive fine print isn't what they signed up for. By integrating AI-driven advisors into the digital banking experience, banks can provide a seamless, in-app solution that delivers instant, relevant answers. This removes the need for customers to leave the app to sift through pages of bank documentation in search of answers, or worse, endure the inconvenience of calling customer service. The result is a smoother and user-friendly interaction, where customers feel supported in their self-service journey, free from the frustration of navigating traditional, cumbersome information sources. The entire experience remains within the application, enhancing convenience and efficiency. Solution overview This AI-driven solution enhances the self-service experience in digital banking by applying Retrieval-Augmented Generation (RAG) principles, which combine the power of generative AI with reliable information retrieval, ensuring that the chatbot provides accurate, contextually relevant responses. The approach begins by processing dense, text-heavy documents, like terms and conditions, often the source of customer inquiries. These documents are divided into smaller, manageable chunks vectorized to create searchable data representations. Storing these vectorized chunks in MongoDB Atlas allows for efficient querying using MongoDB Atlas Vector Search , making it possible to instantly retrieve relevant information based on the customer’s question. Figure 1: Detailed solution architecture When a customer inputs a question in the banking app, the system quickly identifies and retrieves the most relevant chunks using semantic search. The AI then uses this information to generate clear, contextually relevant answers within the app, enabling a smooth, frustration-free experience without requiring customers to sift through dense documents or contact support. Figure 2: Leafy Bank mock-up chatbot in action How MongoDB supports AI-driven banking solutions MongoDB offers unique capabilities that empower financial institutions to build and scale AI-driven applications. Unified data model for flexibility: MongoDB’s flexible document model unifies structured and unstructured data, creating a consistent dataset that enhances the AI’s ability to understand and respond to complex queries. This model enables financial institutions to store and manage customer data, transaction history, and document content within a single system, streamlining interactions and making AI responses more contextually relevant. Vector search for enhanced querying: MongoDB Atlas Vector Search makes it easy to perform semantic searches on vectorized document chunks, quickly retrieving the most relevant information to answer user questions. This capability allows the AI to find precise answers within dense documents, enhancing the self-service experience for customers. Scalable integration with AI models: MongoDB is designed to work seamlessly with leading AI frameworks, allowing banks to integrate and scale AI applications quickly and efficiently. By aligning MongoDB Atlas with cloud-based LLM providers, banks can use the best tools available to interpret and respond to customer queries accurately, meeting demand with responsive, real-time answers. High performance and cost efficiency: MongoDB’s multi-cloud, developer-friendly platform allows financial institutions to innovate without costly infrastructure changes. It’s built to scale as data and AI needs to grow, ensuring banks can continually improve the customer experience with minimal disruptions. MongoDB’s built-in scalability allows banks to expand their AI capabilities effortlessly, offering a future-proof foundation for digital banking. Building future-proof applications Implementing generative AI presents several advantages, not only for end-users of the interactive banking applications but also for financial institutions: Enhanced user experience encourages customer satisfaction, ensures retention, boosts reputation, and reduces customer turnover while unlocking new opportunities for cross-selling and up-selling to increase revenue, drive growth and elevate customer value. Moreover, adopting AI-driven initiatives prepares the groundwork for businesses to develop innovative, creative, and future-proof applications to address customer needs and upgrade business applications with features that are shaping the industry and will continue to do so, here are some examples: Summarize and categorize transactional information by powering applications with MongoDB’s Real-Time Analytics . Understand and find trends based on customer behavior that could positively impact and leverage fraud prevention , anti-money laundering (AML) , and credit card application (just to mention a few). Offering investing, budgeting, and loan assessments through AI-powered conversational banking experience. In today’s data-driven world, companies face increasing pressure to stay ahead of rapid technological advancements and ever-evolving customer demands. Now more than ever, businesses must deliver intuitive, robust, and high-performing services through their applications to remain competitive and meet user expectations. Luckily, MongoDB provides businesses with comprehensive reference architectures for building generative AI applications, an end-to-end technology stack that includes integrations with leading technology providers, professional services, and a coordinated support system through the MongoDB AI Applications Program (MAAP) . By building AI-enriched applications with the leading multi-cloud developer data platform, companies can leverage low-cost, efficient solutions through MongoDB’s flexible and scalable document model which empowers businesses to unify real-time, operational, unstructured, and AI-related data, extending and customizing their applications to seize upcoming technological opportunities. Check out these additional resources to get started on your AI journey with MongoDB: How Leading Industries are Transforming with AI and MongoDB Atlas - E-book Our Solutions Library is where you can learn about different use cases for gen AI and other interesting topics that are applied to financial services and many other industries.
Influencing Product Strategy at MongoDB with Garaudy Etienne
Garaudy Etienne joined MongoDB as a Product Manager in October of 2019. Since then, he’s experienced tremendous growth. Successful deliveries of MongoDB 4.4 features and MongoDB 5.0 sharding features helped fuel Garaudy’s career development, as did his work establishing a long-term sharding vision, mentoring others, and successfully managing interns. Now, as a Director of Product, he’s defining the strategic direction across multiple products and helping grow our product management organization and culture. Read on to learn more about Garaudy’s experience at MongoDB and his expanding team. A team with impact My team focuses on distributed systems within MongoDB's core database functions, also known as the database engine. Our team ensures the database is reliable and scalable for our most demanding customers. We ensure the product consistently performs as promised, especially at scale. MongoDB's dependability drives greater usage, which enhances our revenue and brand perception. The problems my team works on are vast and relatively undefined. These include revamping our Go-To-Market strategy for new and existing features, guiding the engineering team on architectural decisions driven by customer demands, identifying target markets, and assisting customers in challenging situations. MongoDB and AI We’re in the early stages of the AI boom. MongoDB’s document model is particularly well-suited for this era, as it excels in handling unstructured data, which makes up the majority of today’s information. As AI increasingly relies on diverse formats like text, images, and videos, our flexible schema enables efficient storage and retrieval of unstructured data, enabling applications to extract valuable insights. Our vector search capability enables fast, complex data matching and retrieval, making it ideal for AI-powered applications. This synergy between MongoDB’s document model plus Vector Search and the needs of AI-driven applications positions us as a powerful foundation for companies looking to enable AI into their workflows. The beauty of working in the core database is that it has to support every workload, including the new and expanding Vector Search applications. This means we need to ensure the database remains robust and scalable as AI demands evolve. Some examples are helping develop a more scalable architecture for Search or a new networking stack for Search. No matter what new capabilities MongoDB decides to deliver or the new markets we enter, everything must pass through the core database. This also allows you to meet lots of people and understand everything the company is doing instead of working in a silo. A rewarding career in product MongoDB is committed to career development, something I’ve experienced first-hand. The company has provided me with development opportunities through product management-specific training with Reforge, conferences, direct engagement with critical customers, and leadership training. As a product manager, I was offered mentorship and coaching with multiple experienced product leaders who provided guidance and support as I worked toward promotions. The company clearly communicates the expectations and requirements for advancement within the product management organization. Reflecting on my journey at MongoDB, I still remember the first two features I PM’d: Hedged Reads and Mirrored Reads. One of my first major highlights was presenting at the MongoDB 5.0 keynote to showcase resharding. Seeing genuine excitement from customers and internal teams about this new feature was incredibly fulfilling and reinforced its value. While the keynote was a public milestone, another personal highlight came when I finally visited one of my engineering teams in Barcelona after nearly two years of remote collaboration. This in-person time was invaluable and helped us bring the groundbreaking sharding changes for MongoDB 6.0 to the finish line. Most recently, defining the key strategic pillars for MongoDB 8.0 and allowing other product managers to take ownership of key initiatives has been more rewarding than I imagined. MongoDB’s engineering team is extremely talented, and collaborating with them always brings me tremendous joy. The most recent highlight of my career has been building a diverse product team and helping other product managers make a larger impact than they previously envisioned. Why MongoDB What keeps me at MongoDB is the opportunity to tackle significant challenges, make autonomous decisions, own multiple products, and take on greater leadership responsibilities. MongoDB also rewards and recognizes product managers who drive meaningful impact across the organization and its products. If these opportunities excite you, you'll thrive as part of MongoDB’s product management team! For my team, I’m committed to providing the right balance of guidance and autonomy. Your decisions will have a lasting impact at the executive and organizational levels, creating continuous opportunities to excel and deliver meaningful results. Plus, I always try to make the job fun. Head to our careers site to apply for a role on Garaudy’s team and join our talent community to stay in the loop on all things #LifeAtMongoDB!
Customer Service Expert Wati.io Scales Up on MongoDB
Wati.io is a software-as-a-service (SaaS) platform that empowers businesses to develop conversation-driven strategies to boost growth. Founded by CEO Ken Yeung in 2019, Wati started as a chatbot solution for large enterprises, such as banks and insurance companies. However, over time, Yeung and his team noticed a growing need among small and medium-sized businesses (SMBs) to manage customer conversations more effectively. To address this need, Wati used MongoDB Atlas and built a solution based on the WhatsApp Business API. It enables businesses to manage and personalize conversations with customers, automate responses, improve commerce functions, and enhance customer engagement. Speaking at MongoDB.local Hong Kong in September 2024, Yeung said, “The current solutions on the market today are not good enough. Especially for SMBs [that] don’t have the same level of resources as enterprises to deal with the number of conversations and messages that need to be handled every day.” Supporting scale: From MongoDB Community Edition to MongoDB Atlas “From the beginning, we relied on MongoDB to handle high volumes of messaging data and enable businesses to manage and scale their customer interactions efficiently,” said Yeung. Wati originally used MongoDB Community Edition , as the company saw the benefits of a NoSQL model from the beginning. As the company grew, it realized it needed a scalable infrastructure, so Wati transitioned to MongoDB Atlas. “When we started reaching the 2 billion record threshold, we started having some issues. Our system slowed down, and we were not able to scale it,” said Yeung. Atlas has now become an essential part of Wati’s infrastructure, helping the company store and process millions of messages each month for over 10,000 customers in 165 countries. “Transitioning to a new platform—MongoDB Atlas—seamlessly was critical because our messaging system needs to be on 24/7,” said Yeung. Wati collaborated closely with the MongoDB Professional Services and MongoDB Support teams, and in a few months it was able to rearchitect the deployment and data model for future growth and demand. The work included optimizing Wati’s database by breaking it down into clusters. Wati then focused on extracting connections, such as conversations, and dividing and categorizing data within the clusters—for example, qualifying data as cold or hot based on the read and write frequencies. This architecture underpins the platform’s core features, including automated customer engagement, lead qualification, and sales management. Deepening search capabilities with MongoDB Atlas Search For Wati’s customers, the ability to search through conversation histories and company documents to retrieve valuable information is a key function. This often requires searching through millions of records to rapidly find answers so that they can respond to customers in real-time. By using MongoDB Atlas Search , Wati improved its search capabilities, ultimately helping its business customers perform more advanced analytics and improve their customer service agents’ efficiency and customer reporting. “[MongoDB] Atlas Search is really helpful because we don’t have to do a lot of technical integration, and minimal programming is required,” said Yeung. Looking ahead: Using AI and integrating more channels Wati expects to continue collaborating with MongoDB to add more features to its platform and keep innovating at speed. The company is currently exploring to build more AI capabilities of Wati KnowBot , as well as how it can expand its integration with other conversation platforms and channels such as Instagram and Facebook. To learn more about MongoDB Atlas, visit our product page . To get started with MongoDB Atlas Search, visit the Atlas Search product page .
Hanabi Technologies Uses MongoDB to Power AI Assistant, Hana
For all the hype surrounding generative AI, cynics tend to view the few real-world implementations as little more than “fancy chatbots.” But for Abhinav Aggarwal, CEO of Hanabi Technologies , the idea of a generative AI-powered bot that is more than just an assistant was intriguing. “I’d been using ChatGPT since it launched,” said Aggarwal. “That got me thinking: How could we make a chatbot that was like a team member?” And with that concept, Hana was born. The problem with bots “Most generative AI chatbots do not act like people; they wait for a command and give a response,” said Aggarwal. “We wanted to create a human-like chatbot that would proactively help people based on what they wanted—automating reminders, for example, or fetching time zones from your calendar to correctly schedule meetings.” Hanabi’s flagship product, Hana, is an AI assistant designed to enhance team collaboration within Google Chat, working in concert with Google Workspace and its suite of products. “Our target customers are smaller companies of between 10 and 50 people. At this size you’re not going to build your own agent from scratch,” he said. Hana integrates with Google APIs to deliver a human-like assistant that chimes in with helpful interventions, such as automatically setting reminders and making sure meetings are booked in the right time zone for each participant. “Hana is designed to bring AI to smaller companies and help them collaborate in a space where they are already working—Google Workspace,” Aggarwal explained. The MongoDB Atlas solution For Hana to act like a member of the team, Hanabi needed to process massive amounts of data to support advanced features like retrieval-augmented generation (RAG) for better information retrieval across Google Docs and many other sources. And with a rapidly growing user base of over 600 organizations and 17,000+ installs, Hanabi also required a secure, scalable, and high-performing data storage solution. MongoDB Atlas provided a flexible document model, built-in vector database, and scalable cloud-based infrastructure, freeing Hanabi engineers to build new features for Hana rather than focusing on rote tasks like data extract, transform, and load processes or manual scaling and provisioning. Now, MongoDB Atlas handles a variety of responsibilities: Scalability and security: MongoDB Atlas’s auto-scaling and automatic backup features have enabled Hanabi to seamlessly grow its user base without the need for manual database management. RAG: MongoDB Atlas plays a critical role in Hana’s RAG functionality. The platform enables Hanabi to split Google Docs into small sections, create embeddings, and store these sections in Atlas’s vector database. Development Processes: According to Aggarwal, MongoDB’s flexibility in managing changing schemas has been essential to the company’s fast-paced development cycle. Data Visualization: Using MongoDB Atlas Charts has enabled Hanabi to create comprehensive dashboards for real-time data visualization. This has helped the team track usage, set reminders, and optimize performance without needing to build a manual dashboard. Impact and results With MongoDB Atlas, Hanabi can successfully scale Hana to meet the demands of its rapidly expanding user base. The integration is also enabling Hana to offer powerful features like automatic interactions with customers, advanced information retrieval from Google Docs, and manually added memory snippets, making it an essential tool for teams around the world. Next steps Hanabi plans to continue integrating more tools into Hana while expanding its reach to personal Gmail users. The company is also rolling out a new automatic-interaction feature, further enhancing Hana’s ability to proactively assist users without direct commands. MongoDB Atlas remains a key component of Hanabi’s stack, alongside Google Kubernetes Engine, NestJS, and LangChain, enabling Hanabi to focus on innovating to improve the customer experience. Tech Stack MongoDB Atlas Google Kubernetes Engine NestJS LangChain Are you building AI apps? Join the MongoDB AI Innovators Program today! Successful participants gain access to free MongoDB Atlas credits, technical enablement, and invaluable connections within the broader AI ecosystem. If your company is interested in being featured, we’d love to hear from you. Connect with us at ai_adopters@mongodb.com.
Staff Engineering at MongoDB: Your Path to Making Broad Impact
Andrew Whitaker is a Senior Staff Engineer at MongoDB. His previous experience spans tiny startups to enormous organizations like AWS, where he held several different roles focusing on databases. Before joining MongoDB, he worked at a startup building optimized machine learning models in the cloud. Read on to learn more about why Andrew decided to join MongoDB in a senior-level engineering role and how his work is driving improvement within our engineering organization. Why MongoDB I have long been a fan of MongoDB’s products and services. MongoDB the database has always been a pleasure to work with – the system “brings joy” to quote a phrase. As a Python developer, I appreciate how the Python driver feels “Pythonic” in a completely natural way. The programmer interacts with the database using Python constructs: dictionaries, lists, and primitive types. By contrast, SQL databases force me to change my mental model, and the query language feels like an add-on that does not blend with the core language. As an engineer, I am always looking to expand my knowledge and grow my skills. The scope of challenges engineers face at MongoDB is what triggered my interest in the company. We obviously have people working on core databases and distributed systems. But, we also have teams dedicated to machine learning, streaming data, analytics, networking, developer tooling, drivers, and many more areas. It is very hard to get bored working at MongoDB. Finally, I would be remiss if I did not mention the people. Overall, MongoDB’s engineering culture prioritizes intelligence, low ego, and an ability to get stuff done. CL/CI (Continuous Learning, Continuous Improvement) Working at MongoDB has provided me with opportunities for continued learning and growth. Though I do not program as much as I did earlier in my career, I have recently been exploring the Rust language. I’m excited by Rust because it avoids the tradeoffs between predictable performance and safety. My work in the search space has given me exposure to the fast moving world of AI: vector embeddings, RAG, etc. For various reasons, I think MongoDB is uniquely positioned to do well in this area. On top of this, I’m working on some initiatives that are not fully public. I can say that one focus area is improving the sharding experience for our customers. We believe MongoDB sharding is best-in-breed. Still, the process requires more manual configuration than we think is ideal: customers select the shard key, cluster type, shard count, etc. We give guidance here, but I think we can raise the bar in terms of offering a seamless experience with less “futz”. I’m also working with the search team. We believe there is a natural affinity between MongoDB’s document model and AI/ML workloads. We have some features in the works that extend this integration in new and interesting ways. I also spend a fair bit of time driving quality improvements across our suite of products. Our CTO Jim Scharf frequently refers to our “ big 4 ” goals: security, durability, availability, and performance. These goals are more important than any feature we build. I’ve been working across the company to help teams define their availability SLO/SLAs. It turns out that measuring availability is a subtle topic. For example, a naive approach of counting the percentage of failed requests can underestimate downtime because customers make fewer requests when a service is unavailable. So, the first step is to clarify the definition of availability. Finally, as a lapsed academic (in a distant life, I was a graduate student at the University of Washington Department of Computer Science and Engineering), I’m always interested in finding ways to bridge theory and practice. I’ve been collaborating with some folks in our research team to drive improvements to our replication protocols. There are theoretical results that suggest it is impossible to simultaneously achieve low latency and strong consistency (“linearizability” in the technical jargon). However, we believe there are intermediate points in the consistency/latency spectrum that have not been fully explored. This work hasn't been made into a product yet, but stay tuned. Flexible working MongoDB is a hybrid company. Like many of our engineers, I work outside the company headquarters in New York City (I live in Seattle). I appreciate MongoDB’s approach to hybrid working and that company leadership, starting with Dev , cares about the well-being of their employees. It seems there are companies that don’t seem to trust their employees to make decisions, such as which days to come into the office, so I’m thankful for the autonomy I receive at MongoDB to work in a way that’s best for me. Remote work has its challenges, but I would say that the benefit for my work/life balance has been transformative. Final thoughts I have found MongoDB engineers demonstrate a strong mix of technical depth, pragmatism, and empathy. I have yet to find the “smart jerk” prototype that seems to exist throughout the tech industry. Overall, I have found MongoDB is open to change and growth at both the team level and the individual level. There is a willingness to evolve and improve that aligns with the company’s values and leadership principles and enables the success of our technology and people. Find out more about MongoDB culture and career opportunities by joining our talent community .
3 Ways MongoDB EA Azure Arc Certification Serves Customers
One reason more than 50,000 customers across industries choose MongoDB is the freedom to run anywhere—across major cloud providers, on-premises in data centers, and in hybrid deployments. This is why MongoDB is always working to meet customers where they are. For example, many customers choose MongoDB Atlas (which is available in more than 115 cloud regions across major cloud providers) for a fully managed experience. Other customers choose MongoDB Enterprise Advanced (EA) to self-manage their database deployments to meet specific on-premises or hybrid requirements. To that end, we’re pleased to announce that MongoDB EA is one of the first certified Microsoft Azure Arc-enabled Kubernetes applications, which provides customers even more choice of where and how they run MongoDB. Customer adoption of Azure Arc has grown by leaps and bounds. This new certification, and the launch of MongoDB EA as an Arc-enabled Kubernetes application on Azure Marketplace , means that more customers will be able to leverage the unparalleled security, availability, durability, and performance of MongoDB across environments with the centralized management of their Kubernetes deployments. We are very excited to have MongoDB available for our customers on the Azure Marketplace. By extending Azure Arc’s management capabilities to your MongoDB deployments, customers gain the benefit of centralized governance, enhanced security, and deeper insights into database performance. Azure Arc makes hybrid database management with MongoDB efficient and consistent. Collaboration between MongoDB and Microsoft represents an opportunity for many of our customers to further accelerate their digital transformation when building enterprise-class solutions with Azure Arc. Christa St Pierre, Partner Group Manager, Azure Edge Devices, Microsoft Here are three ways the launch of MongoDB EA on Azure Marketplace for Arc-enabled Kubernetes applications gives customers greater flexibility. 1. MongoDB EA supports multi-Kubernetes cluster deployments, simplifies management MongoDB Enterprise Advanced seamlessly integrates market-leading MongoDB capabilities along with robust enterprise support and tools for self-managed deployments at any scale. This powerful solution includes advanced automation, comprehensive auditing, strong authentication, reliable backup, and insightful monitoring capabilities, all of which work together to ensure security compliance and operational efficiency for organizations of any size. The relationship between MongoDB and Kubernetes is one of strong synergy. With Kubernetes, MongoDB EA really can run anywhere, such as a single deployment spanning on-premises and more than one public cloud Kubernetes cluster. Customers can use the MongoDB Enterprise Kubernetes Operator, a key component of MongoDB Enterprise Advanced, to simplify the management and automation of self-managed MongoDB deployments in Kubernetes. This includes tasks like creating and updating deployments, managing backups, and integrating with various Kubernetes services. The ability of the MongoDB Enterprise Kubernetes Operator to deploy and manage MongoDB deployments that span multiple Kubernetes clusters significantly enhances resilience, improves disaster recovery, and minimizes latency by allowing data to be co-located closer to where it is needed, ensuring optimal performance and reliability. 2. Azure Arc complements MongoDB EA, providing centralized management While MongoDB Enterprise Advanced is already among a select group of databases capable of operating across multiple Kubernetes clusters , it is now also supported in Azure Arc-enabled Kubernetes environments. Azure Arc enables the standardized management of Kubernetes clusters across various environments—including in Azure, on-premises, and even other clouds—while harnessing the power of Azure services. Azure Arc accomplishes this by extending the Azure control plane to standardize security and governance across a wide range of resources and locations. For instance, organizations can centrally monitor all of the Azure Arc-enabled Kubernetes clusters using Azure Monitor for containers , or they can enforce threat protection at scale using Microsoft Defender for Kubernetes. This centralized control significantly reduces the complexity of managing Kubernetes clusters running anywhere, as customers can oversee all resources and apply consistent security and compliance policies across their hybrid environment. 3. Customers can leverage the resilience of MongoDB EA and the centralized governance of Azure Arc Together, these solutions empower organizations to build robust applications across a wide array of environments, whether on-premises or in multi-cloud settings. The combination of MongoDB Enterprise Advanced and the MongoDB Enterprise Operator simplifies the deployment of MongoDB across Kubernetes clusters, allowing organizations to fully leverage enhanced resilience and geographic distribution that surpasses the capabilities of a single Kubernetes cluster. Azure Arc further enhances this synergy by providing centralized management for all of these Kubernetes clusters, regardless of where they are running; for customers running entirely in the public cloud, we recommend using MongoDB’s fully managed developer data platform, MongoDB Atlas. If you’re interested in learning more, we invite you to explore the Azure Marketplace listing for MongoDB Enterprise Advanced for Arc-enabled Kubernetes applications. Please note that aside from use for evaluation and development purposes, this offering requires the purchase of a MongoDB Enterprise Advanced subscription. For licensing inquiries, we encourage you to reach out to MongoDB at https://www.mongodb.com/contact to secure your license and to begin harnessing the full potential of these powerful solutions.
Accelerating MongoDB Migration to Azure with Microsoft Migration Factory
Migrating MongoDB workloads from on-premises solutions or other cloud platforms to MongoDB Atlas on Azure has never been simpler, thanks to Microsoft’s Cloud Migration Factory (CMF). This newly created program is perfect for organizations using MongoDB Enterprise Advanced or Community Edition who are ready to modernize. By transitioning to MongoDB Atlas —an integrated suite of data and applications services—customers can simplify their database management, enhance performance, and reduce operational complexities, unlocking new potential and value from their data. Why the Microsoft Cloud Migration Factory (CMF)? The Microsoft CMF offers hands-on delivery for eligible workloads to accelerate customer journeys on Azure at no cost. With repeatable best practices, robust tools, structured processes, and a skilled resource pool, the Microsoft CMF delivery model mitigates technical risk and accelerates deployments with optimized architectures to maximize platform benefits. The MongoDB Migration Factory, meanwhile, is a comprehensive program designed to help organizations migrate their existing databases to MongoDB. This program provides a structured approach, tools, and best practices to ensure a smooth and efficient migration process. Microsoft CMF is partnering with MongoDB Migration Factory to jointly deliver migrations of MongoDB Enterprise Advanced or Community Edition deployments to MongoDB Atlas on Azure in a secure, optimized, and customer-focused way. This comprehensive migration approach enables businesses to leverage Azure for their MongoDB-based solutions with speed, confidence, best practices, and minimal disruption risk at an optimized cost. “This joint delivery offering from Microsoft Cloud Migration Factory (CMF) and MongoDB Migration Factory is designed to accelerate AI transformation priorities for our customers by driving the migrations to MongoDB Atlas on Azure with speed and quality,” said Rashida Hodge, Corporate Vice President of Azure Data and AI at Microsoft. “We have delivered thousands of customer engagements with the CMF model across all Azure workloads, making it a proven approach for accelerating cloud journeys with Microsoft-owned delivery.” Why MongoDB Atlas on Azure? MongoDB Atlas on Azure combines MongoDB’s robust document data platform with Azure’s scalability and advanced cloud services, making it ideal for high-performance applications. Offering features like automatic scaling, high availability, and comprehensive security, MongoDB Atlas on Azure supports diverse workloads, including transaction processing, in-app analytics, and full-text search. Integrations with Azure services—including Azure Synapse Analytics, Microsoft Fabric, and Power BI—enhance MongoDB Atlas’s analytics and visualization capabilities, and compliance with standards like HIPAA and GDPR ensures data privacy, enabling organizations to focus on innovation in a secure, scalable environment. Figure 1: MongoDB Atlas on Azure Integrations ecosystem Migrating MongoDB Community Edition or Enterprise Advanced to MongoDB Atlas on Azure Migrating from MongoDB Community Edition or MongoDB Enterprise Advanced to MongoDB Atlas on Azure offers numerous benefits, including enhanced scalability, security, and operational efficiency. MongoDB Atlas is a fully managed, cloud-based solution that simplifies database management by handling tasks like automatic scaling, high availability, and data backup. Leveraging Azure’s infrastructure, Atlas provides integrated services such as Azure Active Directory for improved authentication and identity management, and global cloud coverage to reduce latency by deploying clusters closer to users. MongoDB Atlas on Azure also includes robust security features like encryption at rest and in transit, network isolation, and advanced access controls, meeting compliance standards. These features are often difficult to implement in a self-managed environment. Additionally, Atlas offers advanced monitoring and automated tuning tools for optimizing database performance and resource usage, helping to reduce costs over time. For organizations considering migration to MongoDB Atlas, Microsoft CMF offers end-to-end guidance, providing a clear roadmap for every stage of the migration process, from initial validation to post-migration testing. With flexible migration paths that cater to a range of needs, Microsoft CMF supports live migrations using tools like mongosync and offline migrations with MongoDB’s native tools, enabling everything from minimal-downtime transitions to complete re-hosting. Best of all, Microsoft CMF is a complimentary service, which means that organizations don’t need to worry about budgets and can focus on the transition to MongoDB Atlas on Azure. In collaboration with MongoDB Professional Services, the CSX team leveraged MongoDB and Microsoft Migration Factory to migrate a mission-critical railroad transportation app quickly and seamlessly with zero downtime. John Maio, Department Head, Enterprise Data & Analytics at CSX Getting started Microsoft CMF’s structured approach guides organizations through each critical milestone to ensure a smooth migration process. For those interested in migrating their MongoDB setup to Azure, contact MongoDB today to take advantage of this free migration opportunity and experience the ease of MongoDB Atlas on Azure with Microsoft CMF support.
MongoDB Database Observability: Integrating with Monitoring Tools
This post is the final in a three-part series on leveraging database observability. Welcome back to our series on Leveraging Database Observability! Our previous post showcased a real-world use case highlighting how MongoDB Atlas’s observability tools effectively tackle database performance challenges. Whether you’re a developer, DBA, or DevOps engineer, our mission is to empower you to harness the full potential of your data through our observability suite . Integrating Atlas metrics with your central enterprise observability tools can simplify your operations. By seamlessly working with popular observability tools, our approach helps teams streamline workflows and enhance visibility across systems. Integrating MongoDB Atlas with third-party monitoring tools MongoDB’s developer data platform combines all essential data services for building modern applications within a unified experience. Our purpose-built observability tools for Atlas environments offer automatic monitoring and optimization, guiding diagnostics tailored specifically for MongoDB. Additionally, we extend Atlas metrics into your existing enterprise observability stack, enabling seamless integration without replacing your current tools. This creates a consolidated, single-pane view that unifies Atlas telemetry with other tech and application metrics, ensuring comprehensive visibility into both database and full-stack performance. This integration empowers you to monitor, receive alerts, and make data-driven decisions within your existing workflows, driving greater efficiency. Below is a quick guide to modifying integration settings through the Atlas UI and the popular integrations we support: Navigate to the Project Integrations page in Atlas. Choose the organization and project you want to configure from the navigation bar. On the Project Integrations page, select the third-party services you’d like to integrate. Configure the chosen services with the required API keys and regions. Critical integrations for your observability platform With Atlas’s Datadog and Prometheus integrations, you can send critical MongoDB metrics to these platforms, empowering detailed, real-time monitoring. Through Datadog , you can track database operation counts, query efficiency, and resource usage, ideal for pinpointing bottlenecks and managing resources. Similarly, Prometheus enables you to monitor essential metrics like query times, connection rates, and memory usage, supporting flexible tracking of database health and performance. Both integrations facilitate proactive detection of issues, alert configuration for resource thresholds, and a cohesive view of Atlas data when visualized in Grafana. Atlas’s integration with PagerDuty streamlines incident management by sending metrics like performance alerts, billing anomalies, and security events directly to PagerDuty. This integration records incidents automatically, notifies teams upon alerts, and supports two-way syncing, ensuring resolved alerts in Atlas are reflected in PagerDuty. It enables efficient incident response and resource allocation to maintain system stability. With Atlas integrations for Microsoft Teams and Slack, you can route key metrics—such as query latency, disk usage, and throughput—to these channels for timely updates. Teams can use these insights for real-time performance monitoring, incident response, and collaboration. Notifications through these platforms ensure your team stays informed on database performance, storage health, and user activity changes as they occur. Use case: Centralized observability with MongoDB Atlas, Datadog, and Slack Let’s walk through a hypothetical scenario for ShopSmart, an e-commerce company that leverages MongoDB Atlas to manage its product catalog and customer data. As traffic surges, the DevOps team faces challenges in monitoring application performance and database health effectively. To tackle these challenges, the team leverages MongoDB Atlas’ integration with Datadog and Slack, creating a powerful observability ecosystem. Integrating MongoDB Atlas with Datadog: The team pushes key MongoDB Atlas metrics into Datadog, such as query performance, connection counts, and Atlas Vector Search metrics. With Datadog, they can visualize these metrics and correlate overall MongoDB performance with their other applications. Out-of-the-box monitors and dedicated dashboards allow the team to track metrics like throughput, average read/write latency, and current connections. This visibility helps pinpoint bottlenecks in real time, ensuring optimal database performance and improving overall application responsiveness. Setting up alerts in Datadog: The team configures alerts for critical metrics like high query latency and increased error rates. When thresholds are breached, Datadog instantly notifies the team. This proactive approach allows the team to address potential performance issues before they impact customers. Integrating Datadog with Slack: To ensure fast communication, alerts are sent directly to the dedicated Slack channel, “ShopSmart-Alerts.” This integration fosters seamless collaboration, enabling the team to discuss and resolve issues in real-time. With these integrations, ShopSmart’s engineering team can monitor performance quickly and address issues efficiently. The unified observability approach enhances operational efficiency, improves the customer experience, and supports ShopSmart’s competitive edge in the e-commerce industry. By leveraging MongoDB Atlas, Datadog, and Slack, the team ensures scalable performance and drives continuous innovation. Conclusion MongoDB Atlas empowers developers and organizations to achieve unparalleled observability and control over their database environments. By seamlessly integrating with central enterprise observability tools, Atlas enhances your ability to monitor performance metrics and ensures you can do so within your existing workflows. This means you can focus on building modern applications confidently, knowing you have the insights and alerts necessary to maintain optimal performance. Embrace the power of MongoDB Atlas and transform your approach to database management—because your applications can thrive when your data is observable. And that wraps up our Leveraging Database Observability series! We hope you learned something new and found value in these discussions. Sign up for MongoDB Atlas , our cloud database service, to see database observability in action. To dive deeper and expand your knowledge, check out this learning byte for more insights on the MongoDB observability suite and how it can enhance your database performance.
MongoDB, Microsoft Team Up to Enhance Copilot in VS Code
As modern applications grow increasingly complex, developers face the challenge of meeting market demands for faster, smarter solutions. To stay ahead, they need tools that streamline their workflows, available directly in the environments where they build. According to the 2024 Stack Overflow Developer Survey , Microsoft’s Visual Studio Code (VS Code) is the integrated development environment (IDE) of choice for 74% of professional developers, serving as a central hub for building, testing, and deploying applications. With the rise of AI-powered tools like GitHub Copilot—which is used by 44% of professional developers—there’s a growing demand for intelligent assistance in the development process without disrupting flow. At MongoDB, we believe that the future of development lies in democratizing the value of these experiences by incorporating domain-specific knowledge and capabilities directly into developer flows. That’s why we’re thrilled to announce the public preview of MongoDB’s extension to GitHub Copilot in VS Code. With this integration, developers can effortlessly generate MongoDB queries, inspect collection schemas, and get answers from the latest MongoDB docs—all without leaving their IDE. Our collaboration with MongoDB continues to bring powerful, integrated solutions to developers building the modern applications of the future. The new MongoDB extension for GitHub Copilot exemplifies a shared commitment to the developer experience, leveraging AI to ensure that workflows are optimized for developer productivity by keeping everything developers need within reach, without breaking their flow. Isidor Nikolic, Senior Product Manager for VS Code, Microsoft But we’re not stopping there. As AI continues to evolve, so will the ways developers interact with their tools. Stay tuned for more exciting developments next week at Microsoft Ignite , where we’ll unveil more ways we’re pushing the boundaries of what’s possible with AI through MongoDB and Microsoft’s partnership! What is MongoDB's Copilot extension? MongoDB’s Copilot extension supercharges your GitHub Copilot in VS Code with MongoDB domain knowledge. The Copilot integration is built into the MongoDB for VS Code extension , which has more than 1.8M downloads in the VS Code marketplace today. Type ‘@MongoDB’ in Copilot chat and take advantage of three transformative commands: Generate queries from natural language (/query) —this generates accurate MongoDB queries by passing collection schema as context to Github Copilot Query MongoDB documentation (/docs) —this answers any documentation questions using the latest MongoDB documentation through Retrieval-Augmented Generation (RAG) Browse collection schema (/schema) —this provides schema information for any collection and is useful for data modeling with the Copilot extension. Generate queries from natural language This command transforms natural language prompts into MongoDB queries, leveraging your collection schema to produce precise, valid queries. It eliminates the need to manually write complex query syntax, and allows developers to quickly extract data without taking their focus away from building applications. Whether you run the query directly from the Copilot chat or refine it in a MongoDB playground file, we’ve sped up the query-building process by deeply integrating these capabilities into the existing flow of MongoDB VS Code extension. Query MongoDB documentation The /docs command answers MongoDB documentation-specific questions, complemented by direct links to the official documentation site. There’s no need to switch back and forth between your browser and your IDE; the Copilot extension calls out to the MongoDB Documentation Chatbot API that leverages retrieval-augmented generation technology to generate responses that are informed by the most recent version of the MongoDB documentation. In the near future, these questions will be smartly routed to documentation for the specific server version of the cluster you are connected to in the MongoDB VS Code extension. Browse collection schema The /schema command offers quick access to collection schemas, making it easier for developers to access and interact with their data model in real-time. This can be helpful in situations where developers are debugging with Copilot or just want to know valid field names while developing their applications. Developers can additionally export collection schemas into JSON files or ask follow-up questions directly to brainstorm data modeling techniques with the MongoDB Copilot extension. On the Horizon This is just the start of our work on MongoDB’s Copilot extension. As we continue to improve the experience with new features—like translating and testing queries to and from popular programming languages, and in-line query generation in Playgrounds—we remain focused on democratizing AI-driven workflows, empowering developers to access the tools and knowledge they need to build smarter, faster, and more efficiently, right within their existing environments. Download MongoDB’s VS Code extension and enable the MongoDB chat experience to get started today.