Sabina Friden

23 results

MongoDB Database Observability: Integrating with Monitoring Tools

This post is the final in a three-part series on leveraging database observability. Welcome back to our series on Leveraging Database Observability! Our previous post showcased a real-world use case highlighting how MongoDB Atlas’s observability tools effectively tackle database performance challenges. Whether you’re a developer, DBA, or DevOps engineer, our mission is to empower you to harness the full potential of your data through our observability suite . Integrating Atlas metrics with your central enterprise observability tools can simplify your operations. By seamlessly working with popular observability tools, our approach helps teams streamline workflows and enhance visibility across systems. Integrating MongoDB Atlas with third-party monitoring tools MongoDB’s developer data platform combines all essential data services for building modern applications within a unified experience. Our purpose-built observability tools for Atlas environments offer automatic monitoring and optimization, guiding diagnostics tailored specifically for MongoDB. Additionally, we extend Atlas metrics into your existing enterprise observability stack, enabling seamless integration without replacing your current tools. This creates a consolidated, single-pane view that unifies Atlas telemetry with other tech and application metrics, ensuring comprehensive visibility into both database and full-stack performance. This integration empowers you to monitor, receive alerts, and make data-driven decisions within your existing workflows, driving greater efficiency. Below is a quick guide to modifying integration settings through the Atlas UI and the popular integrations we support: Navigate to the Project Integrations page in Atlas. Choose the organization and project you want to configure from the navigation bar. On the Project Integrations page, select the third-party services you’d like to integrate. Configure the chosen services with the required API keys and regions. Critical integrations for your observability platform With Atlas’s Datadog and Prometheus integrations, you can send critical MongoDB metrics to these platforms, empowering detailed, real-time monitoring. Through Datadog , you can track database operation counts, query efficiency, and resource usage, ideal for pinpointing bottlenecks and managing resources. Similarly, Prometheus enables you to monitor essential metrics like query times, connection rates, and memory usage, supporting flexible tracking of database health and performance. Both integrations facilitate proactive detection of issues, alert configuration for resource thresholds, and a cohesive view of Atlas data when visualized in Grafana. Atlas’s integration with PagerDuty streamlines incident management by sending metrics like performance alerts, billing anomalies, and security events directly to PagerDuty. This integration records incidents automatically, notifies teams upon alerts, and supports two-way syncing, ensuring resolved alerts in Atlas are reflected in PagerDuty. It enables efficient incident response and resource allocation to maintain system stability. With Atlas integrations for Microsoft Teams and Slack, you can route key metrics—such as query latency, disk usage, and throughput—to these channels for timely updates. Teams can use these insights for real-time performance monitoring, incident response, and collaboration. Notifications through these platforms ensure your team stays informed on database performance, storage health, and user activity changes as they occur. Use case: Centralized observability with MongoDB Atlas, Datadog, and Slack Let’s walk through a hypothetical scenario for ShopSmart, an e-commerce company that leverages MongoDB Atlas to manage its product catalog and customer data. As traffic surges, the DevOps team faces challenges in monitoring application performance and database health effectively. To tackle these challenges, the team leverages MongoDB Atlas’ integration with Datadog and Slack, creating a powerful observability ecosystem. Integrating MongoDB Atlas with Datadog: The team pushes key MongoDB Atlas metrics into Datadog, such as query performance, connection counts, and Atlas Vector Search metrics. With Datadog, they can visualize these metrics and correlate overall MongoDB performance with their other applications. Out-of-the-box monitors and dedicated dashboards allow the team to track metrics like throughput, average read/write latency, and current connections. This visibility helps pinpoint bottlenecks in real time, ensuring optimal database performance and improving overall application responsiveness. Setting up alerts in Datadog: The team configures alerts for critical metrics like high query latency and increased error rates. When thresholds are breached, Datadog instantly notifies the team. This proactive approach allows the team to address potential performance issues before they impact customers. Integrating Datadog with Slack: To ensure fast communication, alerts are sent directly to the dedicated Slack channel, “ShopSmart-Alerts.” This integration fosters seamless collaboration, enabling the team to discuss and resolve issues in real-time. With these integrations, ShopSmart’s engineering team can monitor performance quickly and address issues efficiently. The unified observability approach enhances operational efficiency, improves the customer experience, and supports ShopSmart’s competitive edge in the e-commerce industry. By leveraging MongoDB Atlas, Datadog, and Slack, the team ensures scalable performance and drives continuous innovation. Conclusion MongoDB Atlas empowers developers and organizations to achieve unparalleled observability and control over their database environments. By seamlessly integrating with central enterprise observability tools, Atlas enhances your ability to monitor performance metrics and ensures you can do so within your existing workflows. This means you can focus on building modern applications confidently, knowing you have the insights and alerts necessary to maintain optimal performance. Embrace the power of MongoDB Atlas and transform your approach to database management—because your applications can thrive when your data is observable. And that wraps up our Leveraging Database Observability series! We hope you learned something new and found value in these discussions. Sign up for MongoDB Atlas , our cloud database service, to see database observability in action. To dive deeper and expand your knowledge, check out this learning byte for more insights on the MongoDB observability suite and how it can enhance your database performance.

November 14, 2024

Leveraging Database Observability at MongoDB: Real-Life Use Case

This post is the second in our three-part series, Leveraging Database Observability at MongoDB. Welcome back to the Leveraging Database Observability at MongoDB series. In our last discussion, we explored MongoDB's unique observability strategy using out-of-the-box tools designed to automatically monitor and optimize customer databases. These tools provide continuous feedback to answer critical questions such as what is happening, where is the issue, why is it occurring, and how do I fix it? This ensures enhanced performance, increased productivity, and minimized downtime. So let’s dive into a real-life use case, illustrating how different tools in MongoDB Atlas come together to address database performance issues. Whether you're a DBA, developer, or just a MongoDB enthusiast, our goal is to empower you to harness the full potential of your data using the MongoDB observability suite. Why is it essential to diagnose a performance issue? Identifying database bottlenecks and pinpointing the exact problem can be daunting and time-consuming for developers and DBAs. When your application is slow, several questions may arise: Have I hit my bandwidth limit? Is my cluster under-provisioned and resource-constrained? Does my data model need to be optimized, or cause inefficient data access? Do my queries need to be more efficient, or are they missing necessary indexes? MongoDB Atlas provides tools to zoom in, uncover insights, and detect anomalies that might otherwise go unnoticed in vast data expanses. Let’s put it into practice Let's consider a hypothetical scenario to illustrate how to track down and address a performance bottleneck. Setting the context Imagine you run an online e-commerce store selling a popular item. On average, you sell about 500 units monthly. Your application comprises several services, including user management, product search, inventory management, shopping cart, order management, and payment processing. Recently, your store went viral online, driving significant traffic to your platform. This surge increased request latencies, and customers began reporting slow website performance. Identifying the bottleneck With multiple microservices, finding the service responsible for increased latencies can be challenging. Initial checks might show that inventory loads quickly, search results are prompt, and shopping cart updates are instantaneous. However, the issue might be more nuanced and time-sensitive, potentially leading to a full outage if left unaddressed. The five-step diagnostic process To resolve the issue, we’ll use a five-step diagnostic process: Gather data and insights by collecting relevant metrics and data. Generate hypotheses to formulate possible explanations for the problem. Prioritize hypotheses to use data to identify the most likely cause. Validate hypotheses by confirming or disproving the top hypothesis. Implement and observe to make changes and observe the results. Applying the five-step diagnostic process for resolution Let’s see how this diagnostic process unfolds: Step 1: Gather Data and Insights Customers report that the website is slow, so we start by checking for possible culprits. Inefficient queries, resource constraints, or network issues are the primary suspects. Step 2: Generate Hypotheses Given the context, the application could be making inefficient queries, the database could be resource-constrained, or network congestion could be causing delays. Step 3: Prioritize Hypotheses We begin by examining the Metric Charts in Atlas. Since our initial check revealed no obvious issues, we will investigate further. Step 4: Validate Hypotheses Using Atlas' Namespace Insights , we break down the host-level measurements to get collection-level data. We notice that the transactions.transactions collection has much higher latency than others. By increasing our lookback period to a week, the latency increased just over 24 hours ago when customers began reporting slow performance. Since this collection stores details about transactions, we use the Atlas Query Profiler to find that the queries are inefficient because they’re scanning through the whole transaction documents. This validates our hypothesis that application slowness was due to query inefficiency. Figure 1: New Query Insights Tab Step 5: Implement and Observe We need to create an index to resolve the collection scan issue. The Atlas Performance Advisor suggests an index on the customerID field. Adding this index enables the database to locate and retrieve transaction records for the specified customer more efficiently, reducing execution time. After creating the index, we return to our Namespace Insights page to observe the effect. We see that the latency on our transactions collection has decreased and stabilized. We can now follow up with our customers to update them on our fix and assure them that the problem has been resolved. Conclusion By gathering the correct data, working iteratively, and using the MongoDB observability suite , you can quickly resolve database bottlenecks and restore your application's performance. In our next post in the "Leveraging Database Observability at MongoDB" series, we’ll show how to integrate MongoDB metrics seamlessly into central observability stacks and workflows. This 'plug-and-play' experience aligns with popular monitoring systems like Datadog, New Relic, and Prometheus, offering a unified view of application performance and deep database insights in a comprehensive dashboard. Sign up for MongoDB Atlas , our cloud database service, to see database observability in action. For more information, see our Monitor Your Database Deployment docs page.

July 31, 2024

Leveraging Database Observability at MongoDB: Unlocking Performance Insights and Optimization Strategies

This post is the first in a three-part series on leveraging database observability. Observability has evolved into an essential information technology component, offering advanced insights into system performance beyond traditional monitoring. While monitoring aims to identify problems, observability helps understand and resolve them. Businesses prioritizing observability experience less downtime, leading to enhanced user experiences and improved ROI. Indeed, Splunk’s The State of Observability 2023 report quantified the financial impact of downtime—more than $150,000 per hour. Furthermore, observability leaders reported 33% fewer outages and achieved eight times better ROI than new adopters. Throughout this series, we'll define database observability at MongoDB, explore our suite of tools, delve into third-party integrations, and discuss everyday use cases. We will also establish a shared methodology and vocabulary for discussing observability at MongoDB and highlight the tools and features that have delivered value for our customers. Observability and MongoDB’s strategy Monitoring involves using tools to track real-time operations and alert teams to issues. As defined by Gartner, observability evolves monitoring into a process that provides deep insights into digital business applications, enhancing innovation and customer experience. The key difference is that monitoring detects the presence of issues, while observability gathers detailed information to understand and resolve them, which is crucial for modern IT infrastructure needs. Databases, in particular, play a critical role in this IT ecosystem, where performance and resilience directly impact business outcomes. This advancement is essential for DevOps, Database Administrators, and economic buyers responsible for these databases, as it enhances system reliability, encourages innovation, and supports financial objectives. Ultimately, observability provides comprehensive insights into system performance, health, and reliability by seamlessly integrating and contextualizing telemetry data. MongoDB leverages a unique observability strategy with out-of-the-box tools that automatically monitor and optimize customer databases. Explicitly designed for MongoDB environments, our system provides continuous feedback and answers critical questions—What is happening? Where is the issue? Why is it occurring? How do I fix it?—to enhance performance, increase productivity, and minimize downtime. Supporting MongoDB Atlas (our fully managed platform), Cloud Manager, and Ops Manager, as well as tailored monitoring solutions for the full range of developer data platform products (from enhanced search functionalities to app services and search nodes). Our approach meets the evolving needs of customer applications by: Leveraging MongoDB expertise: The MongoDB observability suite integrates efficiency and best practices from the beginning of the development cycle. As MongoDB platform experts, we use our deep knowledge to provide top-tier optimization insights. We apply our extensive understanding of our tools to ensure our customers benefit from a high-performing and resilient database. Offering streamlined metrics: We integrate our metrics seamlessly into our customers' central observability stacks and workflows. This creates a 'plug-and-play' experience that effortlessly aligns with popular monitoring systems like Datadog, New Relic, and Prometheus. Thus, it provides a unified view of customer application performance and deep insights into their database within a comprehensive dashboard. Breaking down MongoDB’s observability offerings Tailored database performance management MongoDB employs automated tools for comprehensive database performance management, focused on real-time optimization, strategic scaling, and best practices in schema design. Using out-of-the-box tools ensures high-performing, scalable, and cost-efficient database environments ideal for modern applications. Key features include: Performance Advisor : Provides index recommendations to improve read and write performance, significantly boosting overall efficiency. Schema Advisor : Supports flexible schema design and query execution analysis to enhance performance, scalability, and validation rules for schema compliance. Opt-in Autoscaling (only available in Atlas): Optimizes resource use, manages operational costs, ensures continuous availability, and adjusts resources based on demand, preventing downtimes. Performance Advisor in action Foundational monitoring for in-depth insights MongoDB provides foundational monitoring tools and out-of-the-box insights for optimal cluster health and performance after initial database setup. These tools both help reduce the burden of performing manual tasks while laying the groundwork for detailed and granular analysis of metrics and system performance aimed at enhancing query performance, reducing execution times, and lowering resource usage. These tools include: Monitoring Charts : These charts offer detailed metrics on hardware, database operations, replication status, sharded, and search/vector search with a fine-grained metric resolution to identify issues and track trends. Real-Time Performance Panel : This panel displays live network traffic, database operations, and hardware stats, helping to identify critical operations, evaluate query times, and monitor network load and throughput. Query Insights : The recently announced Namespace Insights provides users with collection-level latency statistics. At the same time, the enhanced cluster-centric Query Profiler gives an expanded view of query performance, significantly enhancing visibility and operational efficiency across the cluster. Learn more about both! Comprehensive alerting and seamless integrations MongoDB Atlas's sophisticated alerting system offers over 200 event types, providing teams with comprehensive control and visibility over their environments. Users can fine-tune their alerting strategy with customization options to fit their specific requirements. Additionally, MongoDB Atlas enhances team collaboration and ensures a unified view of application performance through seamless integrations with third-party tools like Slack, PagerDuty, and DataDog. These integrations simplify management tasks and leverage existing workflows for optimum operational effectiveness. What’s next? Enhanced database observability Observability is more than just a technical requirement—it's a strategic asset that enhances operational efficiency and economic viability. Through MongoDB's observability suite, organizations can optimize and scale system performance and fuel innovation. MongoDB is dedicated to continuously improving this suite to manage large-scale data better and meet demanding performance standards. Our commitment is reflected in our efforts to advance MongoDB's observability features, providing specific insights that deliver actionable intelligence tailored to our customers' needs. Look for the next post in this series, where we'll explore various tools and their integration, illustrated through common use cases. Sign up for MongoDB Atlas , our cloud database service, to see database observability in action. For more information, see Monitor Your Database Deployment .

May 30, 2024

Elevating Database Performance: Introducing Query Insights in MongoDB Atlas

Today, at .local NYC, MongoDB Atlas introduced the new Query Insights tab, enhancing how users monitor, manage, and optimize their database performance directly within the Atlas UI. This new feature offers developers deeper insights into their database’s performance, with a more powerful query analysis tool and detailed namespace-level metrics for faster issue resolution and enhanced performance. Applications and workloads change over time, making it increasingly difficult to track inefficient queries that strain a database's resources. Metrics can spike for various reasons, and developers need the right tooling to determine the source of the problem so they can quickly identify and resolve the issue. MongoDB Atlas's Query Insights directly tackles these challenges by enhancing MongoDB's observability capabilities with two crucial features: Namespace Insights and an upgraded Query Profiler. This post is also available in: Deutsch , Français , Español , Português , Italiano , 한국어 , 简体中文 . Query Insights delivers performance optimization through actionable intelligence The introduction of MongoDB Atlas Query Insights demonstrates MongoDB’s commitment to advanced database management. This feature enhances our platform’s observability capabilities with detailed and actionable insights. This feature integrates Namespace Insights and an upgraded Query Profiler within a new dynamic interface, helping boost database performance by streamlining diagnostics and reducing troubleshooting times. The newly added Namespace Insights provides users with collection-level latency statistics and a comprehensive view of how the hottest collections on a cluster perform over time. This enables developers to answer "Who or what is causing the problem?” which is instrumental in identifying performance trends and prioritizing query optimizations. The enhanced cluster-centric Query Profiler introduces a more comprehensive view of slow and inefficient queries over a broader period. Having an overall view of data across the entire cluster facilitates more straightforward navigation between nodes and a longer lookback period to identify trends. This ultimately reduces troubleshooting time, thereby enhancing developer productivity and improving overall database performance. Key benefits of Query Insights Query Insights brings MongoDB Atlas users several new benefits, including: Granular telemetry: Faster identification and resolution of database issues with namespace-level latency statistics Improved observability: It is easier to spot performance trends, identify root causes, and debug applications Enhanced productivity: Reduced troubleshooting time thanks to a more comprehensive view of slow operations Try it out! The Query Insights page provides more granular insights into database performance by providing collection and operation-level details. The Namespace Insights page provides metrics for the top 20 collections by total latency. Hover over the charts to see how collections perform relative to each other over time. This information makes it easier to answer the question: “who/what is causing the problem?” Use the Query Profiler to view specific slow operations. Click on a point in the scatter plot to bring up additional metadata about each slow operation. Click on View More Details to see more metrics and metadata about each slow operation, including the app name, the operation, the plan summary, execution stats, etc. Empowering users for peak performance The launch of Query Insights in MongoDB Atlas underscores MongoDB’s commitment to enhancing our platform's observability capabilities. By providing users with the necessary tools and insights for optimal database performance, MongoDB enables developers to spend less time debugging and more time creating—lowering the total cost of ownership and maximizing efficiency, adding significant value to our users' operations. Sign up for MongoDB Atlas , our cloud database service, to see Query Insights in action, and for more information, see Monitor Query Performance .

May 2, 2024

Améliorer les performances des bases de données : Introduction de Query Insights dans MongoDB Atlas

Aujourd’hui, à la conférence .local NYC, MongoDB Atlas a présenté le nouvel onglet Query Insights, qui améliore la façon dont les utilisateurs surveillent, gèrent et optimisent les performances de leur base de données directement dans l’interface utilisateur d’Atlas. Cette nouvelle fonctionnalité permet aux développeurs de mieux comprendre les performances de leur base de données, grâce à un outil d’analyse des requêtes plus puissant et à des métriques détaillées au niveau de l’espace de noms qui accélèrent la résolution des problèmes et améliorent les performances. Les applications et les charges de travail évoluant au fil du temps, il devient de plus en plus difficile d’assurer le suivi des requêtes inefficaces et coûteuses en ressources de base de données. Les métriques peuvent monter en flèche pour diverses raisons, et les développeurs ont besoin des bons outils pour déterminer la source du problème afin de pouvoir l’identifier et le résoudre rapidement. Query Insights de MongoDB Atlas relève directement ces défis en améliorant les capacités d’observabilité de MongoDB avec deux fonctionnalités essentielles : Namespace Insights et un profileur de requêtes mis à niveau. Query Insights offre une optimisation des performances grâce à des renseignements exploitables L’introduction de MongoDB Atlas Query Insights démontre l’engagement de MongoDB en faveur d’une gestion avancée des bases de données. Cette fonctionnalité améliore les capacités d’observabilité de notre plateforme grâce à des informations détaillées et exploitables. Cette fonctionnalité intègre Namespace Insights et un profileur de requête amélioré au sein d’une nouvelle interface dynamique, ce qui permet d’améliorer les performances des bases de données en rationalisant les diagnostics et en réduisant les temps de dépannage. Le nouveau Namespace Insights fournit aux utilisateurs des statistiques de latence au niveau des collections et une vue d’ensemble des performances des collections les plus actives d’un cluster au fil du temps. Les développeurs peuvent ainsi répondre à la question « qui ou quoi cause le problème ? », ce qui permet d’identifier les tendances dans les performances et de prioriser l’optimisation des requêtes. Le profileur de requêtes amélioré centré sur le cluster introduit une vue plus complète des requêtes lentes et inefficaces sur une période plus étendue. Le fait de disposer d’une vue globale des données sur l’ensemble du cluster facilite la navigation entre les nœuds et allonge la période d’analyse pour identifier les tendances. Au résultat, le temps de dépannage est réduit, la productivité des développeurs accrue et les performances globales de la base de données améliorées. Principaux avantages de Query Insights Query Insights apporte aux utilisateurs de MongoDB Atlas plusieurs nouveaux avantages, notamment : Télémétrie précise  identification et résolution plus rapides des problèmes de base de données grâce aux statistiques de latence au niveau de l’espace de noms Amélioration de l’observabilité : repérage des tendances dans les performances, identification de l’origine des problèmes et débogage des applications plus faciles Amélioration de la productivité : temps de dépannage réduit grâce à une vue plus complète des opérations lentes Faites l’essai ! La page Query Insights fournit des informations plus précises sur les performances de la base de données en affichant des détails au niveau de la collection et de l’opération. La page Namespace Insights affiche des métriques pour les 20 principales collections par latence totale. Passez la souris sur les graphiques pour voir les performances des collections les unes par rapport aux autres au fil du temps. Cette information permet de répondre plus facilement à la question « qui ou quoi cause le problème ? » Utilisez le profileur de requête pour visualiser des opérations lentes spécifiques. Cliquez sur un point du diagramme de dispersion pour afficher des métadonnées supplémentaires sur chaque opération lente. Cliquez sur « Afficher plus de détails » pour voir plus de métriques et de métadonnées sur chaque opération lente, dont le nom de l’application, l’opération, le résumé du plan, les statistiques d’exécution, etc. Permettre aux utilisateurs d’obtenir des performances optimales Le lancement de Query Insights dans MongoDB Atlas souligne l’engagement de MongoDB à améliorer les capacités d’observabilité de notre plateforme. En fournissant aux utilisateurs les outils et les informations nécessaires pour des performances de base de données optimales, MongoDB permet aux développeurs de passer moins de temps à déboguer et plus de temps à créer. Le coût total de possession est réduit et l’efficacité maximisée, ce qui ajoute une valeur significative aux opérations de nos utilisateurs. Inscrivez-vous à MongoDB Atlas , notre service de base de données cloud, pour voir Query Insights en action, et pour plus d’informations, consultez la page «  Surveiller les performances des requêtes  ».

May 2, 2024

데이터베이스 성능 향상: MongoDB Atlas의 쿼리 인사이트(Query Insights) 출시

MongoDB Atlas는 오늘 .local NYC에서 사용자가 Atlas UI 내에서 바로 데이터베이스 성능을 더 효과적으로 모니터링, 관리 및 최적화할 수 있는 새로운 쿼리 인사이트(Query Insights) 탭을 선보였습니다. 이 새로운 기능은 개발자에게 데이터베이스 성능에 대한 보다 심층적인 인사이트를 제공합니다. 더욱 강력해진 쿼리 분석 도구와 상세한 네임스페이스 수준 메트릭을 통해 개발자는 문제를 더 빠르게 해결하고 성능을 개선할 수 있습니다. 애플리케이션과 워크로드는 시간이 지남에 따라 변화하기 때문에 데이터베이스의 리소스에 부담을 주는 비효율적인 쿼리를 추적하기가 점점 더 어려워집니다. 메트릭은 다양한 원인에 따라 증가할 수 있으며 개발자는 문제를 신속하게 식별하고 해결할 수 있도록 문제의 원인을 파악하는 데 적합한 도구가 필요합니다. MongoDB Atlas의 쿼리 인사이트는 네임스페이스 인사이트(Namespace Insights)와 향상된 쿼리 프로파일러(Query Profiler)라는 두 가지 주요 기능으로 MongoDB의 관찰 가능성을 강화하여 이러한 문제를 직접 해결합니다. 실행 가능한 인텔리전스를 통해 성능 최적화를 제공하는 쿼리 인사이트 MongoDB Atlas 쿼리 인사이트의 출시는 MongoDB가 최첨단 데이터베이스 관리를 제공하는 데 전념하고 있음을 보여줍니다. 이 기능은 상세하고 실행 가능한 인사이트를 제공하여 플랫폼의 관찰 가능성을 개선합니다. 또한 새로운 동적 인터페이스에 네임스페이스 인사이트와 향상된 쿼리 프로파일러를 통합하여 진단을 간소화하고 문제 해결 시간을 단축하여 데이터베이스 성능 향상에 도움을 줍니다. 새로 추가된 네임스페이스 인사이트 기능은 사용자에게 컬렉션 수준의 지연 시간 통계를 제공하고 클러스터에서 가장 사용량이 많은 컬렉션의 시간 경과에 따른 성능을 포괄적으로 보여줍니다. 이를 통해 개발자는 "누가 또는 무엇이 문제의 원인인가?"라는 질문에 답변할 수 있으며 이는 성능 추세를 파악하고 쿼리 최적화의 우선순위를 정하는 데 중요한 역할을 합니다. 향상된 클러스터 중심 쿼리 프로파일러는 더 광범위한 기간에 걸쳐 느리고 비효율적인 쿼리를 보다 포괄적으로 보여줍니다. 클러스터 전체에서 데이터를 포괄적으로 파악하면 노드 간 이동이 더 쉬워지고 추세를 파악할 수 있는 조회 기간이 더 길어집니다. 이는 결과적으로 문제 해결 시간을 단축해 주어 개발자 생산성이 향상되고 전반적인 데이터베이스 성능이 개선됩니다. 쿼리 인사이트의 주요 이점 쿼리 인사이트는 MongoDB Atlas 사용자에게 다음과 같은 몇 가지 새로운 이점을 제공합니다. 세분화된 원격 분석: 네임스페이스 수준의 지연 시간 통계를 통해 데이터베이스 문제를 더 빠르게 식별하고 해결할 수 있습니다. 향상된 관찰 가능성: 성능 추세를 더 쉽게 파악하고 근본 원인을 식별할 수 있으며 애플리케이션 디버깅이 더 용이해집니다. 생산성 향상: 느린 작업을 보다 포괄적으로 볼 수 있어 문제 해결 시간이 단축됩니다. 지금 이용해 보세요! 쿼리 인사이트 페이지는 컬렉션 및 운영 수준 세부 정보를 제공하여 데이터베이스 성능에 대한 보다 세분화된 인사이트를 제공합니다. 네임스페이스 인사이트 페이지는 총 지연 시간을 기준으로 상위 20개 컬렉션에 대한 메트릭을 제공합니다. 차트 위로 마우스를 가져가면 시간 경과에 따른 컬렉션의 상대적 성능을 파악할 수 있습니다. 이 정보를 통해 "누가 또는 무엇이 문제의 원인인가?"라는 질문에 더 쉽게 답할 수 있습니다. 쿼리 프로파일러를 사용하여 특정한 느린 작업을 볼 수 있습니다. 분산형 차트의 한 지점을 클릭하면 각 느린 작업에 대한 추가 메타데이터를 가져올 수 있습니다. 세부 정보 보기를 클릭하면 앱 이름, 작업, 계획 요약, 실행 통계 등 각 느린 작업에 대한 더 많은 메트릭과 메타데이터를 확인할 수 있습니다. 사용자가 최고의 역량을 발휘할 수 있도록 지원 MongoDB Atlas의 쿼리 인사이트 출시는 플랫폼의 관측 가능성을 강화하기 위한 MongoDB의 노력을 보여줍니다. MongoDB는 사용자가 디버깅 시간을 줄이고 개발에 더 많은 시간을 할애할 수 있도록 필요한 도구와 인사이트를 제공하여 데이터베이스 성능을 최적화합니다. 이를 통해 총소유비용이 절감되고 효율성이 극대화되며 사용자의 운영에 상당한 이점을 더해줍니다. 클라우드 데이터베이스 서비스인 MongoDB Atlas 에 등록하고 쿼리 인사이트의 실제 활용 사례를 알아보세요. 자세한 내용은 쿼리 성능 모니터링 을 참조하세요.

May 2, 2024

Verbesserung der Datenbankleistung: Einführung von Query Insights in MongoDB Atlas

Heute bei .local NYC hat MongoDB Atlas die neue Registerkarte „Query Insights“ eingeführt, mit der Benutzer die Leistung ihrer Datenbank direkt in der Atlas-Benutzeroberfläche überwachen, verwalten und optimieren können. Diese neue Funktion bietet Entwicklern tiefere Einblicke in die Leistung ihrer Datenbank mit einem leistungsfähigeren Abfrageanalysetool und detaillierten Metriken auf Namespace-Ebene für eine schnellere Problemlösung und verbesserte Leistung. Anwendungen und Workloads ändern sich im Laufe der Zeit, sodass es immer schwieriger wird, ineffiziente Abfragen zu verfolgen, die die Ressourcen einer Datenbank belasten. Metriken können aus verschiedenen Gründen in die Höhe schnellen, und die Entwickler benötigen die richtigen Tools, um die Ursache des Problems zu ermitteln, damit sie das Problem schnell identifizieren und beheben können. Query Insights von MongoDB Atlas geht diese Herausforderungen direkt an, indem es die Beobachtungsmöglichkeiten von MongoDB um zwei entscheidende Funktionen erweitert: Namespace Insights und ein verbesserter Query Profiler. Query Insights bietet Leistungsoptimierung durch umsetzbare Informationen Die Einführung von MongoDB Atlas Query Insights zeigt das Engagement von MongoDB für fortschrittliches Datenbankmanagement. Diese Funktion erweitert die Beobachtungsmöglichkeiten unserer Plattform um detaillierte und umsetzbare Erkenntnisse. Diese Funktion integriert Namespace Insights und einen verbesserten Query Profiler in einer neuen dynamischen Benutzeroberfläche und trägt dazu bei, die Leistung der Datenbank zu steigern, indem sie die Diagnose optimiert und die Fehlerbehebungszeiten reduziert. Die neu hinzugefügten Namespace Insights bieten Anwendern Latenzstatistiken auf Sammlungsebene und einen umfassenden Überblick darüber, wie sich die heißesten Sammlungen in einem Cluster im Laufe der Zeit verhalten. Damit können Entwickler die Frage beantworten: „Wer oder was verursacht das Problem?“ Dies ist wichtig, um Leistungstrends zu erkennen und Abfrageoptimierungen zu priorisieren. Der verbesserte Cluster-zentrierte Query Profiler bietet einen umfassenderen Überblick über langsame und ineffiziente Abfragen über einen größeren Zeitraum. Ein Gesamtüberblick über die Daten des gesamten Clusters ermöglicht eine einfachere Navigation zwischen den Knoten und einen längeren Rückblick, um Trends zu erkennen. Dadurch verringert sich die Zeit für die Fehlersuche, was die Produktivität der Entwickler erhöht und die Gesamtleistung der Datenbank verbessert. Die wichtigsten Vorteile von Query Insights Query Insights bietet Nutzern von MongoDB Atlas mehrere neue Vorteile, darunter: Granulare Telemetrie: Schnellere Identifizierung und Lösung von Datenbankproblemen mit Latenzstatistiken auf Namespace-Ebene Verbesserte Beobachtbarkeit: Es ist einfacher, Leistungstrends zu erkennen, Ursachen zu identifizieren und Anwendungen zu debuggen. Gesteigerte Produktivität: Geringere Zeit für die Fehlersuche dank eines umfassenderen Überblicks über langsame Vorgänge Probieren Sie es aus! Die Seite „Query Insights“ bietet detailliertere Einblicke in die Datenbankleistung, indem sie Details auf Collection- und Vorgangsebene bereitstellt. Die Seite > „Namespace Insights“ bietet Metriken für die 20 wichtigsten Collections nach Gesamtlatenz. Bewegen Sie den Mauszeiger über die Diagramme, um zu sehen, wie sich die Collections im Zeitverlauf im Verhältnis zueinander entwickeln. Diese Informationen erleichtern die Beantwortung der Frage: „Wer/was verursacht das Problem?“ Verwenden Sie den Query Profiler, um bestimmte langsame Vorgänge anzuzeigen. Klicken Sie auf einen Punkt im Streudiagramm, um zusätzliche Metadaten zu jedem langsamen Vorgang anzuzeigen. Klicken Sie auf „Weitere Details anzeigen“, um weitere Metriken und Metadaten zu jedem langsamen Vorgang anzuzeigen, einschließlich des App-Namens, des Vorgangs, der Planübersicht, der Ausführungsstatistiken usw. Befähigen Sie Benutzer zu Höchstleistungen Die Einführung von Query Insights in MongoDB Atlas unterstreicht das Engagement von MongoDB, die Beobachtungsfunktionen unserer Plattform zu verbessern. Indem MongoDB den Benutzern die notwendigen Tools und Einblicke für eine optimale Datenbankleistung bietet, ermöglicht es Entwicklern, weniger Zeit mit der Fehlerbehebung und mehr Zeit mit der Erstellung zu verbringen. Dies senkt die Gesamtbetriebskosten und maximiert die Effizienz, was den Arbeitsabläufen unserer Benutzer einen erheblichen Mehrwert verleiht. Registrieren Sie sich für MongoDB Atlas , unseren Cloud-Datenbankdienst, um Query Insights in Aktion zu sehen. Weitere Informationen finden Sie unter „ Abfrageleistung überwachen “.

May 2, 2024

Elevación del rendimiento de la base de datos: introducción de Query Insights en MongoDB Atlas

Hoy, en .local NYC, MongoDB Atlas introdujo la nueva pestaña Query Insights, que mejora la forma en que los usuarios monitorean, administran y optimizan el rendimiento de sus bases de datos directamente desde la interfaz de usuario de Atlas. Esta nueva característica ofrece a los desarrolladores una visión más profunda del rendimiento de su base de datos, con una herramienta de análisis de consultas más poderosa y métricas detalladas a nivel de espacio de nombres para una resolución de problemas más rápida y un rendimiento mejorado. Las aplicaciones y las cargas de trabajo cambian con el tiempo, lo que dificulta cada vez más el seguimiento de las consultas ineficientes que sobrecargan los recursos de una base de datos. Las métricas pueden aumentar por varias razones, y los desarrolladores necesitan las herramientas adecuadas para determinar el origen del problema, de modo que puedan identificarlo y resolverlo rápidamente. Query Insights de MongoDB Atlas aborda directamente estos desafíos al mejorar las capacidades de observabilidad de MongoDB con dos características cruciales: Namespace Insights y un Query Profiler actualizado. Query Insights ofrece optimización del rendimiento a través de inteligencia procesable La introducción de Query Insights de MongoDB Atlas demuestra el compromiso de MongoDB con la gestión avanzada de bases de datos. Esta característica mejora las capacidades de observabilidad de nuestra plataforma con información detallada y procesable. Esta función integra Namespace Insights y un Query Profiler actualizado dentro de una nueva interfaz dinámica, lo que ayuda a aumentar el rendimiento de la base de datos al optimizar los diagnósticos y reducir los tiempos de solución de problemas. La información de Namespace Insights recién agregada proporciona a los usuarios estadísticas de latencia a nivel de collection y una vista completa de cómo funcionan las collections más populares de un clúster a lo largo del tiempo. Esto permite a los desarrolladores responder a la pregunta "¿Quién o qué está causando el problema?", que es fundamental para identificar tendencias de rendimiento y priorizar optimizaciones de consultas. El Query Profiler mejorado centrado en clústeres presenta una visión más completa de las consultas lentas e ineficientes durante un periodo más amplio. Tener una vista general de los datos de todo el clúster facilita una navegación más sencilla entre los nodos y un periodo retrospectivo más largo para identificar tendencias. En última instancia, esto reduce el tiempo de resolución de problemas, lo que mejora la productividad de los desarrolladores y el rendimiento general de la base de datos. Beneficios clave de Query Insights Query Insights ofrece a los usuarios de MongoDB Atlas varios beneficios nuevos, que incluyen: Telemetría granular: identificación y resolución más rápidas de problemas de base de datos con estadísticas de latencia a nivel de Namespace Observabilidad mejorada: es más fácil detectar tendencias de rendimiento, identificar causas raíz y depurar aplicaciones Productividad mejorada: se reduce el tiempo de resolución de problemas gracias a una visión más completa de las operaciones lentas ¡Pruébelo! La página Query Insights proporciona información más detallada sobre el rendimiento de la base de datos al proporcionar detalles de nivel operativo y collection. La página Namespace Insights> proporciona métricas para las 20 collection principales por latencia total. Pase el cursor sobre los gráficos para ver cómo se comportan las collection entre sí a lo largo del tiempo. Esta información facilita la respuesta a la pregunta: “¿Quién o qué está causando el problema?” Use el Query Profiler para ver operaciones lentas específicas. Haga clic en un punto del diagrama de dispersión para que aparezcan metadatos adicionales sobre cada operación lenta. Haga clic en Ver más detalles para ver más métricas y los metadatos sobre cada operación lenta, incluido el nombre de la aplicación, la operación, el resumen del plan, las estadísticas de ejecución, etc. Cómo empoderar a los usuarios para que obtengan el máximo rendimiento El lanzamiento de Query Insights en MongoDB Atlas subraya el compromiso de MongoDB de mejorar las capacidades de observabilidad de nuestra plataforma. Al proporcionar a los usuarios las herramientas y los conocimientos necesarios para un rendimiento óptimo de la base de datos, MongoDB permite a los desarrolladores dedicar menos tiempo a la depuración y más tiempo a la creación, lo que reduce el costo total de propiedad y maximiza la eficiencia, agregando así un valor significativo a las operaciones de nuestros usuarios. Regístrese en MongoDB Atlas , nuestro servicio de base de datos de cloud, para ver Query Insights en acción, y para obtener más información, consulte Supervisar el rendimiento de las consultas .

May 2, 2024

提升数据库性能:在 MongoDB Atlas 中引入 Query Insights

今天,MongoDB Atlas 在 .local 推出新的 Query Insights(查询见解)标签页,以便增强用户直接在 Atlas 用户界面中监控、管理和优化数据库性能的方式。此项新功能可通过更强大的查询分析工具和详细的命名空间级指标,让开发者更深入地了解数据库的性能,从而更快地解决问题并提高性能。 随着时间的推移,应用程序和工作负载也会发生变化,因此越发难以追踪造成数据库资源紧张的低效查询。指标可能会因各种原因而激增,因此开发者需要正确的工具来确定问题的根源,以便能快速识别和解决此问题。MongoDB Atlas 的 Query Insights 通过 Namespace Insights(命名空间见解)和升级后的查询分析器这两个关键功能来提升 MongoDB 的可观察性,从而直接应对这些挑战。 Query Insights 可通过可行的情报来实现性能优化 MongoDB Atlas Query Insights 的推出表明了 MongoDB 对实现高级数据库管理的承诺。此功能可通过详细且可操作的见解来增强平台的可观察性能力。此功能将命名空间见解和升级后的查询分析器集成到一个新的动态界面中,以便通过简化诊断和缩短故障排除时间来帮助提高数据库性能。 新增的 Namespace Insights 可为用户提供集合级的延迟统计信息,并全面了解集群上最热门的集合在一段时间内的性能。如此一来,开发者便可回答“谁或什么导致了此问题?”,从而有助于识别性能趋势和确定查询优化措施的优先级。 增强后的以集群为中心的查询分析器引入了更全面的视图,以显示更长时间段内缓慢且低效的查询。掌握整个集群中数据的整体情况有助于在各节点之间实现更顺畅的导航,并可延长回溯期以识别趋势。如此,最终便可缩短故障排除时间,从而提高开发者的工作效率并改善整体数据库性能。 Query Insights 的主要优点 Query Insights 可为 MongoDB Atlas 用户提供多项新的优点,其中包括: 精细化遥测: 利用命名空间级延迟统计信息更快地识别和解决数据库问题 提高可观察性: 更轻松地发现性能趋势、确定根本原因和调试应用程序 提高工作效率: 更全面地了解慢速操作,从而缩短故障排除时间 进行试用! Query Insights 页面可通过呈现集合与操作级别的详细信息来提供针对数据库性能的更精细见解。Namespace Insights>(命名空间见解>)页面可提供按总延迟时间划分的前 20 个集合的对应指标。 将鼠标悬停在图表上可查看集合在一段时间内的相对性能。这些信息有助于回答以下问题:“谁/什么导致了问题?” 使用查询分析器可查看特定的慢速操作。单击散点图中的某一点可显示有关每个慢速操作的其他元数据。 单击" View More Details "(查看更多详细信息)可查看有关每个慢速操作的更多指标和元数据,其中包括应用名称、操作、计划摘要、执行统计信息等。 帮助用户实现最佳性能 MongoDB Atlas 中 Query Insights 的推出突显了 MongoDB 对增强我们平台可观察性能力的承诺。通过为用户提供优化数据库性能所需的工具和见解,MongoDB 可助力开发者缩短调试时间并将更多时间用于创造,从而降低总体拥有成本、最大限度地提高效率并为用户的运营注入巨大价值。 注册我们的云数据库服务 MongoDB Atlas ,以便查看 Query Insights 的实际应用。有关更多信息,请参阅“ 监控查询性能 ”。

May 2, 2024

Miglioramento delle prestazioni del database: introduzione di Query Insights in MongoDB Atlas

Oggi, a .local NYC, MongoDB Atlas ha introdotto la nuova tab Query Insights, migliorando il modo in cui gli utenti monitorano, gestiscono e ottimizzano le prestazioni del proprio database direttamente all'interno dell'IU di Atlas. Questa nuova funzionalità offre agli sviluppatori insight più approfonditi sulle prestazioni del loro database, con uno strumento di analisi delle query più potente e metriche dettagliate a livello di namespace per una risoluzione più rapida dei problemi e prestazioni migliorate. Le applicazioni e i carichi di lavoro cambiano nel tempo, rendendo sempre più difficile tenere traccia delle query inefficienti che mettono a dura prova le risorse di un database. Le metriche possono aumentare per vari motivi e gli sviluppatori necessitano degli strumenti giusti per determinare l'origine del problema in modo da poterlo identificare e risolvere rapidamente. Query Insights di MongoDB Atlas affronta direttamente queste sfide migliorando le capacità di osservabilità di MongoDB con due funzionalità cruciali: Namespace Insights e un Query Profiler aggiornato. Query Insights offre l'ottimizzazione delle prestazioni attraverso l'intelligence azionabile L'introduzione di MongoDB Atlas Query Insights dimostra l'impegno di MongoDB nella gestione avanzata dei database. Questa funzionalità migliora le capacità di osservabilità della nostra piattaforma con insight dettagliati e utilizzabili. Questa funzionalità integra Namespace Insights e un Query Profiler aggiornato in una nuova interfaccia dinamica, contribuendo a migliorare le prestazioni del database semplificando la diagnostica e riducendo i tempi di risoluzione dei problemi. La nuova funzionalità Namespace Insights fornisce agli utenti statistiche sulla latency a livello di collection e una visione completa delle prestazioni nel tempo delle collection più importanti di un cluster, consentendo agli sviluppatori di rispondere alla domanda "Chi o cosa sta causando il problema?", che è fondamentale per identificare le tendenze delle prestazioni e dare priorità alle ottimizzazioni delle query. Il Query Profiler migliorato e incentrato sul cluster introduce una visione più completa delle query lente e inefficienti su un periodo più ampio. Una visione globale dei dati dell'intero cluster facilita la navigazione tra i nodi e un periodo di riferimento più lungo per identificare le tendenze. Questo riduce i tempi di risoluzione dei problemi, aumentando la produttività degli sviluppatori e migliorando le prestazioni complessive del database. Vantaggi principali di Query Insights Query Insights offre agli utenti di MongoDB Atlas numerosi nuovi vantaggi, tra cui: Telemetria granulare: identificazione e risoluzione più rapida dei problemi del database con statistiche di latency a livello di namespace Osservabilità migliorata: è più semplice individuare le tendenze delle prestazioni, identificare le cause principali ed eseguire il debug delle applicazioni Maggiore produttività: tempi di risoluzione dei problemi ridotti grazie a una visione più completa delle operazioni lente Provare per credere! La pagina Query Insights fornisce insight più dettagliati sulle prestazioni del database, fornendo dettagli a livello di collection e di operazione. La pagina Namespace Insights> fornisce parametri per le prime 20 collection in base alla latency totale. Passa il mouse sui grafici per vedere come si comportano le collection l'una rispetto all'altra nel tempo. Queste informazioni facilitano la risposta alla domanda: "Chi/cosa sta causando il problema?" Usa Query Profiler per visualizzare specifiche operazioni lente. Fai clic su un punto nel grafico a dispersione per visualizzare metadati aggiuntivi su ciascuna operazione lenta. Fai clic su Visualizza più dettagli per visualizzare più metriche e metadati su ciascuna operazione lenta, incluso il nome dell'app, l'operazione, il riepilogo del piano, le statistiche di esecuzione, ecc. Consentiamo agli utenti di ottenere le massime prestazioni Il lancio di Query Insights in MongoDB Atlas sottolinea l'impegno di MongoDB nel migliorare le capacità di osservabilità della nostra piattaforma. Fornendo agli utenti gli strumenti e gli insight necessari per prestazioni ottimali del database, MongoDB consente agli sviluppatori di dedicare meno tempo al debug e più tempo alla creazione, riducendo il costo totale di proprietà e massimizzando l'efficienza, aggiungendo un valore significativo alle operazioni dei nostri utenti. Registrati su MongoDB Atlas , il nostro servizio di database cloud, per vedere Query Insights in azione e per ulteriori informazioni, consulta Monitorare le prestazioni delle query .

May 2, 2024

Elevando o desempenho do banco de dados: apresentando Query Insights no MongoDB Atlas

Hoje, no .local NYC, o MongoDB Atlas introduziu a nova guia "Insights de consultas", aprimorando como os usuários monitoram, gerenciam e otimizam o desempenho do banco de dados diretamente na IU do Atlas. Esse novo recurso oferece aos desenvolvedores insights mais profundos sobre o desempenho de seus bancos de dados, com uma ferramenta de análise de consultas mais avançada e métricas detalhadas em nível de namespace. Isso garante resolução mais rápida de problemas e desempenho aprimorado. Os aplicativos e as cargas de trabalho mudam com o tempo, dificultando cada vez mais consultas ineficientes que sobrecarregam os recursos de um banco de dados. As métricas podem apresentar picos por vários motivos, e os desenvolvedores precisam das ferramentas certas para determinar a origem do problema, identificá-lo e resolvê-lo com rapidez. Os insights de consultas do MongoDB Atlas abordam diretamente esses desafios, aprimorando os recursos de observabilidade do MongoDB com duas funcionalidades cruciais: insights do namespace e um analista de consultas atualizado. Os insights de consultas oferecem otimização de desempenho com inteligência acionável A introdução dos insights de consultas do MongoDB Atlas demonstra o compromisso do MongoDB com o gerenciamento avançado de banco de dados. Esse recurso aprimora as funções de observabilidade da nossa plataforma com insights detalhados e acionáveis. Essa novidade disponibiliza os insights de namespace e um analista de consultas atualizado em uma nova interface dinâmica para ajudar a aumentar o desempenho do banco de dados com diagnósticos mais simples e redução do tempo de resolução de problemas. Os insights de namespace, que também são novidade, fornecem aos usuários estatísticas de latência em nível de coleção e uma visão abrangente do desempenho das coleções mais usadas em um cluster ao longo do tempo. Isso permite que os desenvolvedores respondam à pergunta "Quem ou o que está causando o problema?", o que é fundamental para identificar tendências de desempenho e priorizar otimizações de consultas. O analista de consultas aprimorado e centrado no cluster apresenta uma visão mais abrangente das consultas lentas e ineficientes em um período mais amplo. Ter uma visão geral dos dados em todo o cluster viabiliza uma navegação mais direta entre os nós e um período de retrospectiva mais longo para ajudar na identificação de tendências. Isso reduz o tempo de solução de problemas e, em outras palavras, aumenta a produtividade do desenvolvedor e melhora o desempenho geral do banco de dados. Principais benefícios dos insights de consultas Os insights de consultas trazem aos usuários do MongoDB Atlas vários novos benefícios, como: Telemetria granular: identificação e resolução mais rápidas de problemas de banco de dados com estatísticas de latência no nível do namespace Observabilidade aprimorada: é mais fácil detectar tendências de desempenho, identificar causas raiz e depurar aplicativos Mais produtividade: redução do tempo de solução de problemas graças a uma visão mais abrangente das operações lentas Experimente! A página dos insights de consultas fornece insights mais detalhados sobre o desempenho do banco de dados, com detalhes em nível de coleção e operação. A página de insights de namespace fornece métricas para as 20 principais coleções por latência total. Passe o mouse sobre os gráficos para ver o desempenho comparativo das coleções ao longo do tempo. Essas informações são fundamentais para responder à pergunta "Quem/o que está causando o problema?" Use o analista de consultas para visualizar operações lentas específicas. Clique em um ponto no gráfico de dispersão para exibir metadados adicionais sobre cada operação lenta. Clique em "Exibir mais detalhes" para ver mais métricas e metadados sobre cada operação lenta, incluindo o nome do aplicativo, a operação, o resumo do plano, as estatísticas de execução etc. Capacitando os usuários para alcançar o desempenho máximo O lançamento dos insights de consultas no MongoDB Atlas destaca o compromisso do MongoDB em aprimorar os recursos de observabilidade da plataforma. Ao fornecer as ferramentas e os insights necessários para obter o desempenho ideal do banco de dados, o MongoDB permite que os desenvolvedores passem menos tempo depurando e mais tempo criando, o que reduz o custo total de propriedade e maximiza a eficiência. Esses benefícios agregam valor significativo às operações dos usuários. Cadastre-se no MongoDB Atlas , nosso serviço de banco de dados em nuvem, para ver os insights de consultas em ação. Se quiser obter mais detalhes, consulte " Monitorar o desempenho da consulta ".

May 2, 2024

Unleashing Developer Potential–and Managing Costs–with MongoDB Atlas

In today's business landscape, where unpredictability has become the norm, engineering leaders have to balance the dual challenges of managing uncertainty while optimizing IT costs. Indeed, the 2024 MarginPLUS Deloitte survey—which draws on insights from over 300 business leaders—emphasizes a collective pivot towards growth initiatives and cost transformations amidst the fluctuating global economic climate. MongoDB Atlas: A developer's ally for cost-effective productivity Executives across industries want to cut costs without impacting innovation; based on the Deloitte survey , 83% of companies are looking to change how they run their business margin improvement efforts. This is where MongoDB Atlas , the most advanced cloud database service on the market, comes in. An integrated suite of data services that simplify how developers build with data, MongoDB Atlas helps teams enhance their productivity without compromising on cost efficiency by offering visibility and control over spending—balancing developer freedom with data governance and cost management. This helps organizations escape the modernization hamster wheel—or the vicious cycle of continuously updating technology without making real progress, and draining resources while failing to deliver meaningful improvements. Put another way, MongoDB gives teams more time to innovate, instead of just maintaining the status quo. Outlined below are the built-in features of MongoDB Atlas, which enable customers to get the most out of their data while also focusing on budget optimization. Strategic features for cost optimization with MongoDB Atlas Right-sizing your cluster Use MongoDB Atlas’s Cluster Sizing Guide or auto-scalability to match your cluster with your workload, optimizing resource use with options for every requirement, including Low CPU options for lighter workloads. Pausing clusters and global distribution Save costs by pausing your cluster , and securely storing data for up to 30 days with auto-resume. Furthermore, Global Clusters improve performance across regions while maintaining cost efficiency and compliance. Index and storage management Enhance performance and reduce costs with MongoDB Atlas’s Performance Advisor , which provides tailored index and schema optimizations for better query execution and potential reductions in cluster size. Strategic data management Reduce storage expenses using Online Archive for infrequently accessed data and TTL indexes for efficient Time Series data management, ensuring only essential data is stored. Securely backup data before deletion with mongodump. Enhanced spend management Use spend analysis, billing alerts , and usage insights via the Billing Cost Explorer for detailed financial management and optimization. Resource tagging and customizable dashboards provide in-depth financial reporting and visual expense tracking, supporting effective budgeting and cost optimization. Additionally, Opt for serverless instances to adjust to your workload's scale, offering a pay-for-what-you-use model that eliminates overprovisioning concerns. Transforming uncertainty into advancement MongoDB Atlas equips IT decision-makers and developers with the features and tools to balance developer productivity with strategic cost management, transforming economic uncertainty into a platform for strategic advancement. MongoDB Atlas is more than a database management solution; it’s a strategic partner in optimizing your IT spending, ensuring that your organization remains agile, efficient, and cost-effective in the face of change. Need expert assistance in taking control of your MongoDB Atlas costs? MongoDB’s Professional Services team can provide a deep-dive assessment of your environment to build a tailored optimization plan—and to help you execute. Reach out to learn how we can support your cost optimization goals! If you haven't yet set up your free cluster on MongoDB Atlas , now is a great time to do so. You have all the instructions in this DevCenter article .

April 8, 2024